Abstract:Developing expertise in diagnostic reasoning requires practice with diverse student artifacts, yet privacy regulations prohibit sharing authentic student work for teacher professional development (PD) at scale. We present DrawSim-PD, the first generative framework that simulates NGSS-aligned, student-like science drawings exhibiting controllable pedagogical imperfections to support teacher training. Central to our approach are apability profiles--structured cognitive states encoding what students at each performance level can and cannot yet demonstrate. These profiles ensure cross-modal coherence across generated outputs: (i) a student-like drawing, (ii) a first-person reasoning narrative, and (iii) a teacher-facing diagnostic concept map. Using 100 curated NGSS topics spanning K-12, we construct a corpus of 10,000 systematically structured artifacts. Through an expert-based feasibility evaluation, K--12 science educators verified the artifacts' alignment with NGSS expectations (>84% positive on core items) and utility for interpreting student thinking, while identifying refinement opportunities for grade-band extremes. We release this open infrastructure to overcome data scarcity barriers in visual assessment research.




Abstract:This study examined whether embedding LLM-guided reflection prompts in an interactive AI-generated podcast improved learning and user experience compared to a version without prompts. Thirty-six undergraduates participated, and while learning outcomes were similar across conditions, reflection prompts reduced perceived attractiveness, highlighting a call for more research on reflective interactivity design.




Abstract:In recent years, numerous researchers have begun investigating how virtual reality (VR) tracking and interaction data can be used for a variety of machine learning purposes, including user identification, predicting cybersickness, and estimating learning gains. One constraint for this research area is the dearth of open datasets. In this paper, we present a new open dataset captured with our VR-based Full-scale Assembly Simulation Testbed (FAST). This dataset consists of data collected from 108 participants (50 females, 56 males, 2 non-binary) learning how to assemble two distinct full-scale structures in VR. In addition to explaining how the dataset was collected and describing the data included, we discuss how the dataset may be used by future researchers.


Abstract:League of Legends (LoL) is the most widely played multiplayer online battle arena (MOBA) game in the world. An important aspect of LoL is competitive ranked play, which utilizes a skill-based matchmaking system to form fair teams. However, players' skill levels vary widely depending on which champion, or hero, that they choose to play as. In this paper, we propose a method for predicting game outcomes in ranked LoL games based on players' experience with their selected champion. Using a deep neural network, we found that game outcomes can be predicted with 75.1% accuracy after all players have selected champions, which occurs before gameplay begins. Our results have important implications for playing LoL and matchmaking. Firstly, individual champion skill plays a significant role in the outcome of a match, regardless of team composition. Secondly, even after the skill-based matchmaking, there is still a wide variance in team skill before gameplay begins. Finally, players should only play champions that they have mastered, if they want to win games.