Abstract:The cold-start user issue further compromises the effectiveness of recommender systems in limiting access to the historical behavioral information. It is an effective pipeline to optimize instructional prompts on a few-shot large language model (LLM) used in recommender tasks. We introduce a context-conditioned prompt formulation method P(u,\ Ds)\ \rightarrow\ R\widehat, where u is a cold-start user profile, Ds is a curated support set, and R\widehat is the predicted ranked list of items. Based on systematic experimentation with transformer-based autoregressive LLMs (BioGPT, LLaMA-2, GPT-4), we provide empirical evidence that optimal exemplar injection and instruction structuring can significantly improve the precision@k and NDCG scores of such models in low-data settings. The pipeline uses token-level alignments and embedding space regularization with a greater semantic fidelity. Our findings not only show that timely composition is not merely syntactic but also functional as it is in direct control of attention scales and decoder conduct through inference. This paper shows that prompt-based adaptation may be considered one of the ways to address cold-start recommendation issues in LLM-based pipelines.
Abstract:With the rapid expansion of user bases on short video platforms, personalized recommendation systems are playing an increasingly critical role in enhancing user experience and optimizing content distribution. Traditional interest modeling methods often rely on unimodal data, such as click logs or text labels, which limits their ability to fully capture user preferences in a complex multimodal content environment. To address this challenge, this paper proposes a multimodal foundation model-based framework for user interest modeling and behavior analysis. By integrating video frames, textual descriptions, and background music into a unified semantic space using cross-modal alignment strategies, the framework constructs fine-grained user interest vectors. Additionally, we introduce a behavior-driven feature embedding mechanism that incorporates viewing, liking, and commenting sequences to model dynamic interest evolution, thereby improving both the timeliness and accuracy of recommendations. In the experimental phase, we conduct extensive evaluations using both public and proprietary short video datasets, comparing our approach against multiple mainstream recommendation algorithms and modeling techniques. Results demonstrate significant improvements in behavior prediction accuracy, interest modeling for cold-start users, and recommendation click-through rates. Moreover, we incorporate interpretability mechanisms using attention weights and feature visualization to reveal the model's decision basis under multimodal inputs and trace interest shifts, thereby enhancing the transparency and controllability of the recommendation system.
Abstract:Conversational recommender systems (CRS) based on Large Language Models (LLMs) need to constantly be aligned to the user preferences to provide satisfying and context-relevant item recommendations. The traditional supervised fine-tuning cannot capture the implicit feedback signal, e.g., dwell time, sentiment polarity, or engagement patterns. In this paper, we share a fine-tuning solution using human feedback reinforcement learning (RLHF) to maximize implied user feedback (IUF) in a multi-turn recommendation context. We specify a reward model $R_{\phi}$ learnt on weakly-labelled engagement information and maximize user-centric utility by optimizing the foundational LLM M_{\theta} through a proximal policy optimization (PPO) approach. The architecture models conversational state transitions $s_t \to a_t \to s_{t +1}$, where the action $a_t$ is associated with LLM-generated item suggestions only on condition of conversation history in the past. The evaluation across synthetic and real-world datasets (e.g.REDIAL, OpenDialKG) demonstrates that our RLHF-fine-tuned models can perform better in terms of top-$k$ recommendation accuracy, coherence, and user satisfaction compared to (arrow-zero-cmwrquca-teja-falset ensuite 2Round group-deca States penalty give up This paper shows that implicit signal alignment can be efficient in achieving scalable and user-adaptive design of CRS.
Abstract:Generative, explainable, and flexible recommender systems, derived using Large Language Models (LLM) are promising and poorly adapted to the cold-start user situation, where there is little to no history of interaction. The current solutions i.e. supervised fine-tuning and collaborative filtering are dense-user-item focused and would be expensive to maintain and update. This paper introduces a meta-learning framework, that can be used to perform parameter-efficient prompt-tuning, to effectively personalize LLM-based recommender systems quickly at cold-start. The model learns soft prompt embeddings with first-order (Reptile) and second-order (MAML) optimization by treating each of the users as the tasks. As augmentations to the input tokens, these learnable vectors are the differentiable control variables that represent user behavioral priors. The prompts are meta-optimized through episodic sampling, inner-loop adaptation, and outer-loop generalization. On MovieLens-1M, Amazon Reviews, and Recbole, we can see that our adaptive model outperforms strong baselines in NDCG@10, HR@10, and MRR, and it runs in real-time (i.e., below 300 ms) on consumer GPUs. Zero-history personalization is also supported by this scalable solution, and its 275 ms rate of adaptation allows successful real-time risk profiling of financial systems by shortening detection latency and improving payment network stability. Crucially, the 275 ms adaptation capability can enable real-time risk profiling for financial institutions, reducing systemic vulnerability detection latency significantly versus traditional compliance checks. By preventing contagion in payment networks (e.g., Fedwire), the framework strengthens national financial infrastructure resilience.
Abstract:With the rapid growth of fintech, personalized financial product recommendations have become increasingly important. Traditional methods like collaborative filtering or content-based models often fail to capture users' latent preferences and complex relationships. We propose a hybrid framework integrating large language models (LLMs) and graph neural networks (GNNs). A pre-trained LLM encodes text data (e.g., user reviews) into rich feature vectors, while a heterogeneous user-product graph models interactions and social ties. Through a tailored message-passing mechanism, text and graph information are fused within the GNN to jointly optimize embeddings. Experiments on public and real-world financial datasets show our model outperforms standalone LLM or GNN in accuracy, recall, and NDCG, with strong interpretability. This work offers new insights for personalized financial recommendations and cross-modal fusion in broader recommendation tasks.
Abstract:As e-commerce competition intensifies, balancing creative content with conversion effectiveness becomes critical. Leveraging LLMs' language generation capabilities, we propose a framework that integrates prompt engineering, multi-objective fine-tuning, and post-processing to generate marketing copy that is both engaging and conversion-driven. Our fine-tuning method combines sentiment adjustment, diversity enhancement, and CTA embedding. Through offline evaluations and online A/B tests across categories, our approach achieves a 12.5 % increase in CTR and an 8.3 % increase in CVR while maintaining content novelty. This provides a practical solution for automated copy generation and suggests paths for future multimodal, real-time personalization.