Carnegie Mellon University
Abstract:Traditional multilingual neural machine translation (MNMT) uses a single model to translate all directions. However, with the increasing scale of language pairs, simply using a single model for massive MNMT brings new challenges: parameter tension and large computations. In this paper, we revisit multi-way structures by assigning an individual branch for each language (group). Despite being a simple architecture, it is challenging to train de-centralized models due to the lack of constraints to align representations from all languages. We propose a localized training recipe to map different branches into a unified space, resulting in an efficient detachable model, Lego-MT. For a fair comparison, we collect data from OPUS and build the first large-scale open-source translation benchmark covering 7 language-centric data, each containing 445 language pairs. Experiments show that Lego-MT (1.2B) brings gains of more than 4 BLEU while outperforming M2M-100 (12B) (We will public all training data, models, and checkpoints)




Abstract:With increasing scale, large language models demonstrate both quantitative improvement and new qualitative capabilities, especially as zero-shot learners, like GPT-3. However, these results rely heavily on delicate prompt design and large computation. In this work, we explore whether the strong zero-shot ability could be achieved at a smaller model scale without any external supervised data. To achieve this goal, we revisit masked language modeling and present a geometry-guided self-supervised learning method (Go-tuningfor short) by taking a small number of task-aware self-supervised data to update language models further. Experiments show that Go-tuning can enable T5-small (80M) competitive zero-shot results compared with large language models, such as T5-XL (3B). We also apply Go-tuning on multi-task settings and develop a multi-task model, mgo-T5 (250M). It can reach the average performance of OPT (175B) on 9 datasets.
Abstract:Is it possible to leverage large scale raw and raw parallel corpora to build a general learned metric? Existing learned metrics have gaps to human judgements, are model-dependent or are limited to the domains or tasks where human ratings are available. In this paper, we propose SEScore2, a model-based metric pretrained over million-scale synthetic dataset constructed by our novel retrieval augmented data synthesis pipeline. SEScore2 achieves high correlation to human judgements without any human rating supervisions. Importantly, our unsupervised SEScore2 can outperform supervised metrics, which are trained on the News human ratings, at the TED domain. We evaluate SEScore2 over four text generation tasks across three languages. SEScore2 outperforms all prior unsupervised evaluation metrics in machine translation, speech translation, data-to-text and dialogue generation, with average Kendall improvements 0.158. SEScore2 even outperforms SOTA supervised BLEURT at data-to-text, dialogue generation and overall correlation.




Abstract:End-to-end Speech Translation (E2E ST) aims to translate source speech into target translation without generating the intermediate transcript. However, existing approaches for E2E ST degrade considerably when only limited ST data are available. We observe that an ST model's performance strongly correlates with its embedding similarity from speech and transcript. In this paper, we propose Word-Aligned COntrastive learning (WACO), a novel method for few-shot speech-to-text translation. Our key idea is bridging word-level representations for both modalities via contrastive learning. We evaluate WACO and other methods on the MuST-C dataset, a widely used ST benchmark. Our experiments demonstrate that WACO outperforms the best baseline methods by 0.7-8.5 BLEU points with only 1-hour parallel data. Code is available at https://anonymous.4open.science/r/WACO .




Abstract:Fine-grained semantic segmentation of a person's face and head, including facial parts and head components, has progressed a great deal in recent years. However, it remains a challenging task, whereby considering ambiguous occlusions and large pose variations are particularly difficult. To overcome these difficulties, we propose a novel framework termed Mask-FPAN. It uses a de-occlusion module that learns to parse occluded faces in a semi-supervised way. In particular, face landmark localization, face occlusionstimations, and detected head poses are taken into account. A 3D morphable face model combined with the UV GAN improves the robustness of 2D face parsing. In addition, we introduce two new datasets named FaceOccMask-HQ and CelebAMaskOcc-HQ for face paring work. The proposed Mask-FPAN framework addresses the face parsing problem in the wild and shows significant performance improvements with MIOU from 0.7353 to 0.9013 compared to the state-of-the-art on challenging face datasets.




Abstract:Deep unfolding networks (DUNs) have proven to be a viable approach to compressive sensing (CS). In this work, we propose a DUN called low-rank CS network (LR-CSNet) for natural image CS. Real-world image patches are often well-represented by low-rank approximations. LR-CSNet exploits this property by adding a low-rank prior to the CS optimization task. We derive a corresponding iterative optimization procedure using variable splitting, which is then translated to a new DUN architecture. The architecture uses low-rank generation modules (LRGMs), which learn low-rank matrix factorizations, as well as gradient descent and proximal mappings (GDPMs), which are proposed to extract high-frequency features to refine image details. In addition, the deep features generated at each reconstruction stage in the DUN are transferred between stages to boost the performance. Our extensive experiments on three widely considered datasets demonstrate the promising performance of LR-CSNet compared to state-of-the-art methods in natural image CS.




Abstract:How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.




Abstract:Given a possibly false claim sentence, how can we automatically correct it with minimal editing? Existing methods either require a large number of pairs of false and corrected claims for supervised training or do not handle well errors spanning over multiple tokens within an utterance. In this paper, we propose VENCE, a novel method for factual error correction (FEC) with minimal edits. VENCE formulates the FEC problem as iterative sampling editing actions with respect to a target density function. We carefully design the target function with predicted truthfulness scores from an offline trained fact verification model. VENCE samples the most probable editing positions based on back-calculated gradients of the truthfulness score concerning input tokens and the editing actions using a distantly-supervised language model (T5). Experiments on a public dataset show that VENCE improves the well-adopted SARI metric by 5.3 (or a relative improvement of 11.8%) over the previous best distantly-supervised methods.




Abstract:Antimicrobial peptide (AMP) is a promising therapy in the treatment of broad-spectrum antibiotics and drug-resistant infections. Recently, an increasing number of researchers have been introducing deep generative models to accelerate AMP discovery. However, current studies mainly focus on sequence attributes and ignore structure information, which is important in AMP biological functions. In this paper, we propose a latent sequence-structure model for AMPs (LSSAMP) with multi-scale VQ-VAE to incorporate secondary structures. By sampling in the latent space, LSSAMP can simultaneously generate peptides with ideal sequence attributes and secondary structures. Experimental results show that the peptides generated by LSSAMP have a high probability of AMP, and two of the 21 candidates have been verified to have good antimicrobial activity. Our model will be released to help create high-quality AMP candidates for follow-up biological experiments and accelerate the whole AMP discovery.
Abstract:Multimodal relation extraction is an essential task for knowledge graph construction. In this paper, we take an in-depth empirical analysis that indicates the inaccurate information in the visual scene graph leads to poor modal alignment weights, further degrading performance. Moreover, the visual shuffle experiments illustrate that the current approaches may not take full advantage of visual information. Based on the above observation, we further propose a strong baseline with an implicit fine-grained multimodal alignment based on Transformer for multimodal relation extraction. Experimental results demonstrate the better performance of our method. Codes are available at https://github.com/zjunlp/DeepKE/tree/main/example/re/multimodal.