Carnegie Mellon University
Abstract:Multimodal relation extraction is an essential task for knowledge graph construction. In this paper, we take an in-depth empirical analysis that indicates the inaccurate information in the visual scene graph leads to poor modal alignment weights, further degrading performance. Moreover, the visual shuffle experiments illustrate that the current approaches may not take full advantage of visual information. Based on the above observation, we further propose a strong baseline with an implicit fine-grained multimodal alignment based on Transformer for multimodal relation extraction. Experimental results demonstrate the better performance of our method. Codes are available at https://github.com/zjunlp/DeepKE/tree/main/example/re/multimodal.
Abstract:Myocardial pathology segmentation (MyoPS) can be a prerequisite for the accurate diagnosis and treatment planning of myocardial infarction. However, achieving this segmentation is challenging, mainly due to the inadequate and indistinct information from an image. In this work, we develop an end-to-end deep neural network, referred to as MyoPS-Net, to flexibly combine five-sequence cardiac magnetic resonance (CMR) images for MyoPS. To extract precise and adequate information, we design an effective yet flexible architecture to extract and fuse cross-modal features. This architecture can tackle different numbers of CMR images and complex combinations of modalities, with output branches targeting specific pathologies. To impose anatomical knowledge on the segmentation results, we first propose a module to regularize myocardium consistency and localize the pathologies, and then introduce an inclusiveness loss to utilize relations between myocardial scars and edema. We evaluated the proposed MyoPS-Net on two datasets, i.e., a private one consisting of 50 paired multi-sequence CMR images and a public one from MICCAI2020 MyoPS Challenge. Experimental results showed that MyoPS-Net could achieve state-of-the-art performance in various scenarios. Note that in practical clinics, the subjects may not have full sequences, such as missing LGE CMR or mapping CMR scans. We therefore conducted extensive experiments to investigate the performance of the proposed method in dealing with such complex combinations of different CMR sequences. Results proved the superiority and generalizability of MyoPS-Net, and more importantly, indicated a practical clinical application.
Abstract:Knowledge distillation (KD) is an effective framework to transfer knowledge from a large-scale teacher to a compact yet well-performing student. Previous KD practices for pre-trained language models mainly transfer knowledge by aligning instance-wise outputs between the teacher and student, while neglecting an important knowledge source, i.e., the gradient of the teacher. The gradient characterizes how the teacher responds to changes in inputs, which we assume is beneficial for the student to better approximate the underlying mapping function of the teacher. Therefore, we propose Gradient Knowledge Distillation (GKD) to incorporate the gradient alignment objective into the distillation process. Experimental results show that GKD outperforms previous KD methods regarding student performance. Further analysis shows that incorporating gradient knowledge makes the student behave more consistently with the teacher, improving the interpretability greatly.
Abstract:In this work, we present a novel non-rigid shape matching framework based on multi-resolution functional maps with spectral attention. Existing functional map learning methods all rely on the critical choice of the spectral resolution hyperparameter, which can severely affect the overall accuracy or lead to overfitting, if not chosen carefully. In this paper, we show that spectral resolution tuning can be alleviated by introducing spectral attention. Our framework is applicable in both supervised and unsupervised settings, and we show that it is possible to train the network so that it can adapt the spectral resolution, depending on the given shape input. More specifically, we propose to compute multi-resolution functional maps that characterize correspondence across a range of spectral resolutions, and introduce a spectral attention network that helps to combine this representation into a single coherent final correspondence. Our approach is not only accurate with near-isometric input, for which a high spectral resolution is typically preferred, but also robust and able to produce reasonable matching even in the presence of significant non-isometric distortion, which poses great challenges to existing methods. We demonstrate the superior performance of our approach through experiments on a suite of challenging near-isometric and non-isometric shape matching benchmarks.
Abstract:Investigating better ways to reuse the released pre-trained language models (PLMs) can significantly reduce the computational cost and the potential environmental side-effects. This paper explores a novel PLM reuse paradigm, Knowledge Integration (KI). Without human annotations available, KI aims to merge the knowledge from different teacher-PLMs, each of which specializes in a different classification problem, into a versatile student model. To achieve this, we first derive the correlation between virtual golden supervision and teacher predictions. We then design a Model Uncertainty--aware Knowledge Integration (MUKI) framework to recover the golden supervision for the student. Specifically, MUKI adopts Monte-Carlo Dropout to estimate model uncertainty for the supervision integration. An instance-wise re-weighting mechanism based on the margin of uncertainty scores is further incorporated, to deal with the potential conflicting supervision from teachers. Experimental results demonstrate that MUKI achieves substantial improvements over baselines on benchmark datasets. Further analysis shows that MUKI can generalize well for merging teacher models with heterogeneous architectures, and even teachers major in cross-lingual datasets.
Abstract:Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21 En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data.
Abstract:Previous literature has proved that Pretrained Language Models (PLMs) can store factual knowledge. However, we find that facts stored in the PLMs are not always correct. It motivates us to explore a fundamental question: How do we calibrate factual knowledge in PLMs without re-training from scratch? In this work, we propose a simple and lightweight method CaliNet to achieve this goal. To be specific, we first detect whether PLMs can learn the right facts via a contrastive score between right and fake facts. If not, we then use a lightweight method to add and adapt new parameters to specific factual texts. Experiments on the knowledge probing task show the calibration effectiveness and efficiency. In addition, through closed-book question answering, we find that the calibrated PLM possesses knowledge generalization ability after fine-tuning. Beyond the calibration performance, we further investigate and visualize the knowledge calibration mechanism.
Abstract:PARAGEN is a PyTorch-based NLP toolkit for further development on parallel generation. PARAGEN provides thirteen types of customizable plugins, helping users to experiment quickly with novel ideas across model architectures, optimization, and learning strategies. We implement various features, such as unlimited data loading and automatic model selection, to enhance its industrial usage. ParaGen is now deployed to support various research and industry applications at ByteDance. PARAGEN is available at https://github.com/bytedance/ParaGen.
Abstract:How can we protect the intellectual property of trained NLP models? Modern NLP models are prone to stealing by querying and distilling from their publicly exposed APIs. However, existing protection methods such as watermarking only work for images but are not applicable to text. We propose Distillation-Resistant Watermarking (DRW), a novel technique to protect NLP models from being stolen via distillation. DRW protects a model by injecting watermarks into the victim's prediction probability corresponding to a secret key and is able to detect such a key by probing a suspect model. We prove that a protected model still retains the original accuracy within a certain bound. We evaluate DRW on a diverse set of NLP tasks including text classification, part-of-speech tagging, and named entity recognition. Experiments show that DRW protects the original model and detects stealing suspects at 100% mean average precision for all four tasks while the prior method fails on two.
Abstract:The issue of factual consistency in abstractive summarization has attracted much attention in recent years, and the evaluation of factual consistency between summary and document has become an important and urgent task. Most of the current evaluation metrics are adopted from the question answering (QA). However, the application of QA-based metrics is extremely time-consuming in practice, causing the iteration cycle of abstractive summarization research to be severely prolonged. In this paper, we propose a new method called ClozE to evaluate factual consistency by cloze model, instantiated based on masked language model(MLM), with strong interpretability and substantially higher speed. We demonstrate that ClozE can reduce the evaluation time by nearly 96$\%$ relative to QA-based metrics while retaining their interpretability and performance through experiments on six human-annotated datasets and a meta-evaluation benchmark GO FIGURE \citep{gabriel2020go}. We also implement experiments to further demonstrate more characteristics of ClozE in terms of performance and speed. In addition, we conduct an experimental analysis of the limitations of ClozE, which suggests future research directions. The code and models for ClozE will be released upon the paper acceptance.