Carnegie Mellon University
Abstract:In this work, we present a novel non-rigid shape matching framework based on multi-resolution functional maps with spectral attention. Existing functional map learning methods all rely on the critical choice of the spectral resolution hyperparameter, which can severely affect the overall accuracy or lead to overfitting, if not chosen carefully. In this paper, we show that spectral resolution tuning can be alleviated by introducing spectral attention. Our framework is applicable in both supervised and unsupervised settings, and we show that it is possible to train the network so that it can adapt the spectral resolution, depending on the given shape input. More specifically, we propose to compute multi-resolution functional maps that characterize correspondence across a range of spectral resolutions, and introduce a spectral attention network that helps to combine this representation into a single coherent final correspondence. Our approach is not only accurate with near-isometric input, for which a high spectral resolution is typically preferred, but also robust and able to produce reasonable matching even in the presence of significant non-isometric distortion, which poses great challenges to existing methods. We demonstrate the superior performance of our approach through experiments on a suite of challenging near-isometric and non-isometric shape matching benchmarks.
Abstract:Investigating better ways to reuse the released pre-trained language models (PLMs) can significantly reduce the computational cost and the potential environmental side-effects. This paper explores a novel PLM reuse paradigm, Knowledge Integration (KI). Without human annotations available, KI aims to merge the knowledge from different teacher-PLMs, each of which specializes in a different classification problem, into a versatile student model. To achieve this, we first derive the correlation between virtual golden supervision and teacher predictions. We then design a Model Uncertainty--aware Knowledge Integration (MUKI) framework to recover the golden supervision for the student. Specifically, MUKI adopts Monte-Carlo Dropout to estimate model uncertainty for the supervision integration. An instance-wise re-weighting mechanism based on the margin of uncertainty scores is further incorporated, to deal with the potential conflicting supervision from teachers. Experimental results demonstrate that MUKI achieves substantial improvements over baselines on benchmark datasets. Further analysis shows that MUKI can generalize well for merging teacher models with heterogeneous architectures, and even teachers major in cross-lingual datasets.
Abstract:Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21 En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data.
Abstract:PARAGEN is a PyTorch-based NLP toolkit for further development on parallel generation. PARAGEN provides thirteen types of customizable plugins, helping users to experiment quickly with novel ideas across model architectures, optimization, and learning strategies. We implement various features, such as unlimited data loading and automatic model selection, to enhance its industrial usage. ParaGen is now deployed to support various research and industry applications at ByteDance. PARAGEN is available at https://github.com/bytedance/ParaGen.
Abstract:Previous literature has proved that Pretrained Language Models (PLMs) can store factual knowledge. However, we find that facts stored in the PLMs are not always correct. It motivates us to explore a fundamental question: How do we calibrate factual knowledge in PLMs without re-training from scratch? In this work, we propose a simple and lightweight method CaliNet to achieve this goal. To be specific, we first detect whether PLMs can learn the right facts via a contrastive score between right and fake facts. If not, we then use a lightweight method to add and adapt new parameters to specific factual texts. Experiments on the knowledge probing task show the calibration effectiveness and efficiency. In addition, through closed-book question answering, we find that the calibrated PLM possesses knowledge generalization ability after fine-tuning. Beyond the calibration performance, we further investigate and visualize the knowledge calibration mechanism.
Abstract:How can we protect the intellectual property of trained NLP models? Modern NLP models are prone to stealing by querying and distilling from their publicly exposed APIs. However, existing protection methods such as watermarking only work for images but are not applicable to text. We propose Distillation-Resistant Watermarking (DRW), a novel technique to protect NLP models from being stolen via distillation. DRW protects a model by injecting watermarks into the victim's prediction probability corresponding to a secret key and is able to detect such a key by probing a suspect model. We prove that a protected model still retains the original accuracy within a certain bound. We evaluate DRW on a diverse set of NLP tasks including text classification, part-of-speech tagging, and named entity recognition. Experiments show that DRW protects the original model and detects stealing suspects at 100% mean average precision for all four tasks while the prior method fails on two.
Abstract:The issue of factual consistency in abstractive summarization has attracted much attention in recent years, and the evaluation of factual consistency between summary and document has become an important and urgent task. Most of the current evaluation metrics are adopted from the question answering (QA). However, the application of QA-based metrics is extremely time-consuming in practice, causing the iteration cycle of abstractive summarization research to be severely prolonged. In this paper, we propose a new method called ClozE to evaluate factual consistency by cloze model, instantiated based on masked language model(MLM), with strong interpretability and substantially higher speed. We demonstrate that ClozE can reduce the evaluation time by nearly 96$\%$ relative to QA-based metrics while retaining their interpretability and performance through experiments on six human-annotated datasets and a meta-evaluation benchmark GO FIGURE \citep{gabriel2020go}. We also implement experiments to further demonstrate more characteristics of ClozE in terms of performance and speed. In addition, we conduct an experimental analysis of the limitations of ClozE, which suggests future research directions. The code and models for ClozE will be released upon the paper acceptance.
Abstract:We propose a generalized framework for block-structured nonconvex optimization, which can be applied to structured subgraph detection in interdependent networks, such as multi-layer networks, temporal networks, networks of networks, and many others. Specifically, we design an effective, efficient, and parallelizable projection algorithm, namely Graph Block-structured Gradient Projection (GBGP), to optimize a general non-linear function subject to graph-structured constraints. We prove that our algorithm: 1) runs in nearly-linear time on the network size; 2) enjoys a theoretical approximation guarantee. Moreover, we demonstrate how our framework can be applied to two very practical applications and conduct comprehensive experiments to show the effectiveness and efficiency of our proposed algorithm.
Abstract:Analogical reasoning is fundamental to human cognition and holds an important place in various fields. However, previous studies mainly focus on single-modal analogical reasoning and ignore taking advantage of structure knowledge. Notably, the research in cognitive psychology has demonstrated that information from multimodal sources always brings more powerful cognitive transfer than single modality sources. To this end, we introduce the new task of multimodal analogical reasoning over knowledge graphs, which requires multimodal reasoning ability with the help of background knowledge. Specifically, we construct a Multimodal Analogical Reasoning dataSet (MARS) and a multimodal knowledge graph MarKG. We evaluate with multimodal knowledge graph embedding and pre-trained Transformer baselines, illustrating the potential challenges of the proposed task. We further propose a novel model-agnostic Multimodal analogical reasoning framework with Transformer (MarT) motivated by the structure mapping theory, which can obtain better performance.
Abstract:In this work, we present a novel learning-based framework that combines the local accuracy of contrastive learning with the global consistency of geometric approaches, for robust non-rigid matching. We first observe that while contrastive learning can lead to powerful point-wise features, the learned correspondences commonly lack smoothness and consistency, owing to the purely combinatorial nature of the standard contrastive losses. To overcome this limitation we propose to boost contrastive feature learning with two types of smoothness regularization that inject geometric information into correspondence learning. With this novel combination in hand, the resulting features are both highly discriminative across individual points, and, at the same time, lead to robust and consistent correspondences, through simple proximity queries. Our framework is general and is applicable to local feature learning in both the 3D and 2D domains. We demonstrate the superiority of our approach through extensive experiments on a wide range of challenging matching benchmarks, including 3D non-rigid shape correspondence and 2D image keypoint matching.