Abstract:Contrastive Language-Image Pre-training (CLIP) starts to emerge in many computer vision tasks and has achieved promising performance. However, it remains underexplored whether CLIP can be generalized to 3D hand pose estimation, as bridging text prompts with pose-aware features presents significant challenges due to the discrete nature of joint positions in 3D space. In this paper, we make one of the first attempts to propose a novel 3D hand pose estimator from monocular images, dubbed as CLIP-Hand3D, which successfully bridges the gap between text prompts and irregular detailed pose distribution. In particular, the distribution order of hand joints in various 3D space directions is derived from pose labels, forming corresponding text prompts that are subsequently encoded into text representations. Simultaneously, 21 hand joints in the 3D space are retrieved, and their spatial distribution (in x, y, and z axes) is encoded to form pose-aware features. Subsequently, we maximize semantic consistency for a pair of pose-text features following a CLIP-based contrastive learning paradigm. Furthermore, a coarse-to-fine mesh regressor is designed, which is capable of effectively querying joint-aware cues from the feature pyramid. Extensive experiments on several public hand benchmarks show that the proposed model attains a significantly faster inference speed while achieving state-of-the-art performance compared to methods utilizing the similar scale backbone.
Abstract:Synthetic aperture radar (SAR) image change detection is a critical task and has received increasing attentions in the remote sensing community. However, existing SAR change detection methods are mainly based on convolutional neural networks (CNNs), with limited consideration of global attention mechanism. In this letter, we explore Transformer-like architecture for SAR change detection to incorporate global attention. To this end, we propose a convolution and attention mixer (CAMixer). First, to compensate the inductive bias for Transformer, we combine self-attention with shift convolution in a parallel way. The parallel design effectively captures the global semantic information via the self-attention and performs local feature extraction through shift convolution simultaneously. Second, we adopt a gating mechanism in the feed-forward network to enhance the non-linear feature transformation. The gating mechanism is formulated as the element-wise multiplication of two parallel linear layers. Important features can be highlighted, leading to high-quality representations against speckle noise. Extensive experiments conducted on three SAR datasets verify the superior performance of the proposed CAMixer. The source codes will be publicly available at https://github.com/summitgao/CAMixer .
Abstract:The prominent progress in generative models has significantly improved the reality of generated faces, bringing serious concerns to society. Since recent GAN-generated faces are in high realism, the forgery traces have become more imperceptible, increasing the forensics challenge. To combat GAN-generated faces, many countermeasures based on Convolutional Neural Networks (CNNs) have been spawned due to their strong learning ability. In this paper, we rethink this problem and explore a new approach based on forest models instead of CNNs. Specifically, we describe a simple and effective forest-based method set called {\em ForensicsForest Family} to detect GAN-generate faces. The proposed ForensicsForest family is composed of three variants, which are {\em ForensicsForest}, {\em Hybrid ForensicsForest} and {\em Divide-and-Conquer ForensicsForest} respectively. ForenscisForest is a newly proposed Multi-scale Hierarchical Cascade Forest, which takes semantic, frequency and biology features as input, hierarchically cascades different levels of features for authenticity prediction, and then employs a multi-scale ensemble scheme that can comprehensively consider different levels of information to improve the performance further. Based on ForensicsForest, we develop Hybrid ForensicsForest, an extended version that integrates the CNN layers into models, to further refine the effectiveness of augmented features. Moreover, to reduce the memory cost in training, we propose Divide-and-Conquer ForensicsForest, which can construct a forest model using only a portion of training samplings. In the training stage, we train several candidate forest models using the subsets of training samples. Then a ForensicsForest is assembled by picking the suitable components from these candidate forest models...
Abstract:Hyperspectral unmixing is a critical yet challenging task in hyperspectral image interpretation. Recently, great efforts have been made to solve the hyperspectral unmixing task via deep autoencoders. However, existing networks mainly focus on extracting spectral features from mixed pixels, and the employment of spatial feature prior knowledge is still insufficient. To this end, we put forward a spatial attention weighted unmixing network, dubbed as SAWU-Net, which learns a spatial attention network and a weighted unmixing network in an end-to-end manner for better spatial feature exploitation. In particular, we design a spatial attention module, which consists of a pixel attention block and a window attention block to efficiently model pixel-based spectral information and patch-based spatial information, respectively. While in the weighted unmixing framework, the central pixel abundance is dynamically weighted by the coarse-grained abundances of surrounding pixels. In addition, SAWU-Net generates dynamically adaptive spatial weights through the spatial attention mechanism, so as to dynamically integrate surrounding pixels more effectively. Experimental results on real and synthetic datasets demonstrate the better accuracy and superiority of SAWU-Net, which reflects the effectiveness of the proposed spatial attention mechanism.
Abstract:Traditionally, numerical models have been deployed in oceanography studies to simulate ocean dynamics by representing physical equations. However, many factors pertaining to ocean dynamics seem to be ill-defined. We argue that transferring physical knowledge from observed data could further improve the accuracy of numerical models when predicting Sea Surface Temperature (SST). Recently, the advances in earth observation technologies have yielded a monumental growth of data. Consequently, it is imperative to explore ways in which to improve and supplement numerical models utilizing the ever-increasing amounts of historical observational data. To this end, we introduce a method for SST prediction that transfers physical knowledge from historical observations to numerical models. Specifically, we use a combination of an encoder and a generative adversarial network (GAN) to capture physical knowledge from the observed data. The numerical model data is then fed into the pre-trained model to generate physics-enhanced data, which can then be used for SST prediction. Experimental results demonstrate that the proposed method considerably enhances SST prediction performance when compared to several state-of-the-art baselines.
Abstract:Removing the noise and improving the visual quality of hyperspectral images (HSIs) is challenging in academia and industry. Great efforts have been made to leverage local, global or spectral context information for HSI denoising. However, existing methods still have limitations in feature interaction exploitation among multiple scales and rich spectral structure preservation. In view of this, we propose a novel solution to investigate the HSI denoising using a Multi-scale Adaptive Fusion Network (MAFNet), which can learn the complex nonlinear mapping between clean and noisy HSI. Two key components contribute to improving the hyperspectral image denoising: A progressively multiscale information aggregation network and a co-attention fusion module. Specifically, we first generate a set of multiscale images and feed them into a coarse-fusion network to exploit the contextual texture correlation. Thereafter, a fine fusion network is followed to exchange the information across the parallel multiscale subnetworks. Furthermore, we design a co-attention fusion module to adaptively emphasize informative features from different scales, and thereby enhance the discriminative learning capability for denoising. Extensive experiments on synthetic and real HSI datasets demonstrate that the proposed MAFNet has achieved better denoising performance than other state-of-the-art techniques. Our codes are available at \verb'https://github.com/summitgao/MAFNet'.
Abstract:Considering the ill-posed nature, contrastive regularization has been developed for single image dehazing, introducing the information from negative images as a lower bound. However, the contrastive samples are nonconsensual, as the negatives are usually represented distantly from the clear (i.e., positive) image, leaving the solution space still under-constricted. Moreover, the interpretability of deep dehazing models is underexplored towards the physics of the hazing process. In this paper, we propose a novel curricular contrastive regularization targeted at a consensual contrastive space as opposed to a non-consensual one. Our negatives, which provide better lower-bound constraints, can be assembled from 1) the hazy image, and 2) corresponding restorations by other existing methods. Further, due to the different similarities between the embeddings of the clear image and negatives, the learning difficulty of the multiple components is intrinsically imbalanced. To tackle this issue, we customize a curriculum learning strategy to reweight the importance of different negatives. In addition, to improve the interpretability in the feature space, we build a physics-aware dual-branch unit according to the atmospheric scattering model. With the unit, as well as curricular contrastive regularization, we establish our dehazing network, named C2PNet. Extensive experiments demonstrate that our C2PNet significantly outperforms state-of-the-art methods, with extreme PSNR boosts of 3.94dB and 1.50dB, respectively, on SOTS-indoor and SOTS-outdoor datasets.
Abstract:Trajectory-User Linking (TUL) is crucial for human mobility modeling by linking different trajectories to users with the exploration of complex mobility patterns. Existing works mainly rely on the recurrent neural framework to encode the temporal dependencies in trajectories, have fall short in capturing spatial-temporal global context for TUL prediction. To fill this gap, this work presents a new hierarchical spatio-temporal attention neural network, called AttnTUL, to jointly encode the local trajectory transitional patterns and global spatial dependencies for TUL. Specifically, our first model component is built over the graph neural architecture to preserve the local and global context and enhance the representation paradigm of geographical regions and user trajectories. Additionally, a hierarchically structured attention network is designed to simultaneously encode the intra-trajectory and inter-trajectory dependencies, with the integration of the temporal attention mechanism and global elastic attentional encoder. Extensive experiments demonstrate the superiority of our AttnTUL method as compared to state-of-the-art baselines on various trajectory datasets. The source code of our model is available at \url{https://anonymous.4open.science/r/Attn_TUL}.
Abstract:The joint hyperspectral image (HSI) and LiDAR data classification aims to interpret ground objects at more detailed and precise level. Although deep learning methods have shown remarkable success in the multisource data classification task, self-supervised learning has rarely been explored. It is commonly nontrivial to build a robust self-supervised learning model for multisource data classification, due to the fact that the semantic similarities of neighborhood regions are not exploited in existing contrastive learning framework. Furthermore, the heterogeneous gap induced by the inconsistent distribution of multisource data impedes the classification performance. To overcome these disadvantages, we propose a Nearest Neighbor-based Contrastive Learning Network (NNCNet), which takes full advantage of large amounts of unlabeled data to learn discriminative feature representations. Specifically, we propose a nearest neighbor-based data augmentation scheme to use enhanced semantic relationships among nearby regions. The intermodal semantic alignments can be captured more accurately. In addition, we design a bilinear attention module to exploit the second-order and even high-order feature interactions between the HSI and LiDAR data. Extensive experiments on four public datasets demonstrate the superiority of our NNCNet over state-of-the-art methods. The source codes are available at \url{https://github.com/summitgao/NNCNet}.
Abstract:Forecasts by the European Centre for Medium-Range Weather Forecasts (ECMWF; EC for short) can provide a basis for the establishment of maritime-disaster warning systems, but they contain some systematic biases.The fifth-generation EC atmospheric reanalysis (ERA5) data have high accuracy, but are delayed by about 5 days. To overcome this issue, a spatiotemporal deep-learning method could be used for nonlinear mapping between EC and ERA5 data, which would improve the quality of EC wind forecast data in real time. In this study, we developed the Multi-Task-Double Encoder Trajectory Gated Recurrent Unit (MT-DETrajGRU) model, which uses an improved double-encoder forecaster architecture to model the spatiotemporal sequence of the U and V components of the wind field; we designed a multi-task learning loss function to correct wind speed and wind direction simultaneously using only one model. The study area was the western North Pacific (WNP), and real-time rolling bias corrections were made for 10-day wind-field forecasts released by the EC between December 2020 and November 2021, divided into four seasons. Compared with the original EC forecasts, after correction using the MT-DETrajGRU model the wind speed and wind direction biases in the four seasons were reduced by 8-11% and 9-14%, respectively. In addition, the proposed method modelled the data uniformly under different weather conditions. The correction performance under normal and typhoon conditions was comparable, indicating that the data-driven mode constructed here is robust and generalizable.