Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Real World Games Look Like Spinning Tops

Apr 20, 2020
Wojciech Marian Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei, David Balduzzi, Max Jaderberg


  Access Paper or Ask Questions

Learning to Resolve Alliance Dilemmas in Many-Player Zero-Sum Games

Feb 27, 2020
Edward Hughes, Thomas W. Anthony, Tom Eccles, Joel Z. Leibo, David Balduzzi, Yoram Bachrach

* Accepted for publication at AAMAS 2020 

  Access Paper or Ask Questions

From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization

Feb 19, 2020
Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder, Georgios Piliouras, Marc Lanctot, Karl Tuyls

* 43 pages 

  Access Paper or Ask Questions

Minimax Theorem for Latent Games or: How I Learned to Stop Worrying about Mixed-Nash and Love Neural Nets

Feb 14, 2020
Gauthier Gidel, David Balduzzi, Wojciech Marian Czarnecki, Marta Garnelo, Yoram Bachrach

* 15 pages 

  Access Paper or Ask Questions

Smooth markets: A basic mechanism for organizing gradient-based learners

Jan 18, 2020
David Balduzzi, Wojciech M Czarnecki, Thomas W Anthony, Ian M Gemp, Edward Hughes, Joel Z Leibo, Georgios Piliouras, Thore Graepel

* ICLR 2020 
* 18 pages, 3 figures 

  Access Paper or Ask Questions

LOGAN: Latent Optimisation for Generative Adversarial Networks

Dec 02, 2019
Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan, Timothy Lillicrap


  Access Paper or Ask Questions

Differentiable Game Mechanics

May 13, 2019
Alistair Letcher, David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, Thore Graepel

* Journal of Machine Learning Research (JMLR), v20 (84) 1-40, 2019 
* JMLR 2019, journal version of arXiv:1802.05642 

  Access Paper or Ask Questions

Open-ended Learning in Symmetric Zero-sum Games

Jan 23, 2019
David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech M. Czarnecki, Julien Perolat, Max Jaderberg, Thore Graepel

* 18 pages, 7 figures 

  Access Paper or Ask Questions

Stable Opponent Shaping in Differentiable Games

Nov 20, 2018
Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktäschel, Shimon Whiteson

* 20 pages, 7 figures 

  Access Paper or Ask Questions

Re-evaluating Evaluation

Oct 30, 2018
David Balduzzi, Karl Tuyls, Julien Perolat, Thore Graepel

* NIPS 2018, final version 

  Access Paper or Ask Questions

The Mechanics of n-Player Differentiable Games

Jun 06, 2018
David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, Thore Graepel

* PMLR volume 80, 2018 
* ICML 2018, final version 

  Access Paper or Ask Questions

Neural Taylor Approximations: Convergence and Exploration in Rectifier Networks

Jun 06, 2018
David Balduzzi, Brian McWilliams, Tony Butler-Yeoman

* PMLR volume 70, 2017 
* ICML 2017, final version 

  Access Paper or Ask Questions

Strongly-Typed Agents are Guaranteed to Interact Safely

Jun 06, 2018
David Balduzzi

* PMLR volume 70, 2017 
* ICML 2017, final version 

  Access Paper or Ask Questions

The Shattered Gradients Problem: If resnets are the answer, then what is the question?

Jun 06, 2018
David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, Brian McWilliams

* PMLR volume 70 (2017) 
* ICML 2017, final version 

  Access Paper or Ask Questions

Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation

Aug 01, 2016
Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, Wen Li

* to appear in European Conference on Computer Vision (ECCV) 2016 

  Access Paper or Ask Questions

Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization

Jul 26, 2016
Muhammad Ghifary, David Balduzzi, W. Bastiaan Kleijn, Mengjie Zhang

* to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence 

  Access Paper or Ask Questions

Strongly-Typed Recurrent Neural Networks

May 24, 2016
David Balduzzi, Muhammad Ghifary

* 10 pages, final version, ICML 2016 

  Access Paper or Ask Questions

Deep Online Convex Optimization by Putting Forecaster to Sleep

Apr 08, 2016
David Balduzzi

* Rendered obsolete by arXiv:1604.01952. The new version contains the same basic results, with major changes to exposition and minor changes to terminology 

  Access Paper or Ask Questions

Deep Online Convex Optimization with Gated Games

Apr 07, 2016
David Balduzzi

* 13 pages. This paper renders arXiv:1509.01851 obsolete. It contains the same basic results, with major changes to exposition and minor changes to terminology 

  Access Paper or Ask Questions

Compliance-Aware Bandits

Feb 09, 2016
Nicol√°s Della Penna, Mark D. Reid, David Balduzzi


  Access Paper or Ask Questions

Semantics, Representations and Grammars for Deep Learning

Sep 29, 2015
David Balduzzi

* 20 pages, many diagrams 

  Access Paper or Ask Questions

Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

Sep 10, 2015
David Balduzzi, Muhammad Ghifary

* 27 pages 

  Access Paper or Ask Questions

Domain Generalization for Object Recognition with Multi-task Autoencoders

Aug 31, 2015
Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Balduzzi

* accepted in ICCV 2015 

  Access Paper or Ask Questions

Kickback cuts Backprop's red-tape: Biologically plausible credit assignment in neural networks

Nov 23, 2014
David Balduzzi, Hastagiri Vanchinathan, Joachim Buhmann

* 7 pages. To appear, AAAI-15 

  Access Paper or Ask Questions

Falsifiable implies Learnable

Aug 28, 2014
David Balduzzi


  Access Paper or Ask Questions

Cortical prediction markets

Jan 07, 2014
David Balduzzi

* To appear, AAMAS 2014 

  Access Paper or Ask Questions

Correlated random features for fast semi-supervised learning

Nov 05, 2013
Brian McWilliams, David Balduzzi, Joachim M. Buhmann

* 15 pages, 3 figures, 6 tables 

  Access Paper or Ask Questions

Randomized co-training: from cortical neurons to machine learning and back again

Oct 24, 2013
David Balduzzi

* NIPS workshop: Randomized methods for machine learning 

  Access Paper or Ask Questions

Metabolic cost as an organizing principle for cooperative learning

Feb 09, 2013
David Balduzzi, Pedro A Ortega, Michel Besserve

* 14 pages, 2 figures, to appear in Advances in Complex Systems 

  Access Paper or Ask Questions