Abstract:Can your humanoid walk up and hand you a full cup of beer, without spilling a drop? While humanoids are increasingly featured in flashy demos like dancing, delivering packages, traversing rough terrain, fine-grained control during locomotion remains a significant challenge. In particular, stabilizing a filled end-effector (EE) while walking is far from solved, due to a fundamental mismatch in task dynamics: locomotion demands slow-timescale, robust control, whereas EE stabilization requires rapid, high-precision corrections. To address this, we propose SoFTA, a Slow-Fast TwoAgent framework that decouples upper-body and lower-body control into separate agents operating at different frequencies and with distinct rewards. This temporal and objective separation mitigates policy interference and enables coordinated whole-body behavior. SoFTA executes upper-body actions at 100 Hz for precise EE control and lower-body actions at 50 Hz for robust gait. It reduces EE acceleration by 2-5x relative to baselines and performs much closer to human-level stability, enabling delicate tasks such as carrying nearly full cups, capturing steady video during locomotion, and disturbance rejection with EE stability.
Abstract:Reinforcement learning (RL) has made significant strides in legged robot control, enabling locomotion across diverse terrains and complex loco-manipulation capabilities. However, the commonly used position or velocity tracking-based objectives are agnostic to forces experienced by the robot, leading to stiff and potentially dangerous behaviors and poor control during forceful interactions. To address this limitation, we present \emph{Force-Adaptive Control via Impedance Reference Tracking} (FACET). Inspired by impedance control, we use RL to train a control policy to imitate a virtual mass-spring-damper system, allowing fine-grained control under external forces by manipulating the virtual spring. In simulation, we demonstrate that our quadruped robot achieves improved robustness to large impulses (up to 200 Ns) and exhibits controllable compliance, achieving an 80% reduction in collision impulse. The policy is deployed to a physical robot to showcase both compliance and the ability to engage with large forces by kinesthetic control and pulling payloads up to 2/3 of its weight. Further extension to a legged loco-manipulator and a humanoid shows the applicability of our method to more complex settings to enable whole-body compliance control. Project Website: https://egalahad.github.io/facet/
Abstract:3D Gaussian Splatting (3DGS) is increasingly popular for 3D reconstruction due to its superior visual quality and rendering speed. However, 3DGS training currently occurs on a single GPU, limiting its ability to handle high-resolution and large-scale 3D reconstruction tasks due to memory constraints. We introduce Grendel, a distributed system designed to partition 3DGS parameters and parallelize computation across multiple GPUs. As each Gaussian affects a small, dynamic subset of rendered pixels, Grendel employs sparse all-to-all communication to transfer the necessary Gaussians to pixel partitions and performs dynamic load balancing. Unlike existing 3DGS systems that train using one camera view image at a time, Grendel supports batched training with multiple views. We explore various optimization hyperparameter scaling strategies and find that a simple sqrt(batch size) scaling rule is highly effective. Evaluations using large-scale, high-resolution scenes show that Grendel enhances rendering quality by scaling up 3DGS parameters across multiple GPUs. On the Rubble dataset, we achieve a test PSNR of 27.28 by distributing 40.4 million Gaussians across 16 GPUs, compared to a PSNR of 26.28 using 11.2 million Gaussians on a single GPU. Grendel is an open-source project available at: https://github.com/nyu-systems/Grendel-GS