Macquarie University
Abstract:The cells and their spatial patterns in the tumor microenvironment (TME) play a key role in tumor evolution, and yet remains an understudied topic in computational pathology. This study, to the best of our knowledge, is among the first to hybrid local and global graph methods to profile orchestration and interaction of cellular components. To address the challenge in hematolymphoid cancers where the cell classes in TME are unclear, we first implemented cell level unsupervised learning and identified two new cell subtypes. Local cell graphs or supercells were built for each image by considering the individual cell's geospatial location and classes. Then, we applied supercell level clustering and identified two new cell communities. In the end, we built global graphs to abstract spatial interaction patterns and extract features for disease diagnosis. We evaluate the proposed algorithm on H\&E slides of 60 hematolymphoid neoplasm patients and further compared it with three cell level graph-based algorithms, including the global cell graph, cluster cell graph, and FLocK. The proposed algorithm achieves a mean diagnosis accuracy of 0.703 with the repeated 5-fold cross-validation scheme. In conclusion, our algorithm shows superior performance over the existing methods and can be potentially applied to other cancer types.
Abstract:This paper considers the problem of minimizing a convex expectation function with a set of inequality convex expectation constraints. We present a computable stochastic approximation type algorithm, namely the stochastic linearized proximal method of multipliers, to solve this convex stochastic optimization problem. This algorithm can be roughly viewed as a hybrid of stochastic approximation and the traditional proximal method of multipliers. Under mild conditions, we show that this algorithm exhibits $O(K^{-1/2})$ expected convergence rates for both objective reduction and constraint violation if parameters in the algorithm are properly chosen, where $K$ denotes the number of iterations. Moreover, we show that, with high probability, the algorithm has $O(\log(K)K^{-1/2})$ constraint violation bound and $O(\log^{3/2}(K)K^{-1/2})$ objective bound. Some preliminary numerical results demonstrate the performance of the proposed algorithm.
Abstract:Anomalies represent rare observations (e.g., data records or events) that are deviating significantly from others. Over the last forty years, researches on anomalies have received great interests because of their significance in many disciplines (e.g., computer science, chemistry, and biology). Anomaly detection, which aims to identify these rare observations, is among the most vital tasks and has shown its power in preventing detrimental events, such as financial fraud and network intrusion, from happening. The detection task is typically solved by detecting outlying data points in the features space and inherently overlooks the structural information in real-world data. Graphs have been prevalently used to preserve the structural information, and this raises the graph anomaly detection problem - identifying anomalous graph objects (i.e., nodes, edges and sub-graphs). However, conventional anomaly detection techniques cannot well solve this problem because of the complexity of graph data (e.g., irregular structures, non-independent and large-scale). For the aptitudes of deep learning in breaking these limitations, graph anomaly detection with deep learning has received intensified studies recently. In this survey, we aim to provide a systematic and comprehensive review of the contemporary deep learning techniques for graph anomaly detection. Specifically, our categorization follows a task-driven strategy and classifies existing works according to the anomalous graph objects they can detect. We especially focus on the motivations, key intuitions and technical details of existing works. We also summarize open-sourced implementations, public datasets, and commonly-used evaluation metrics for future studies. Finally, we highlight twelve future research directions according to our survey results covering emerging problems introduced by graph data, anomaly detection and real applications.
Abstract:With the rising demand of smart mobility, ride-hailing service is getting popular in the urban regions. These services maintain a system for serving the incoming trip requests by dispatching available vehicles to the pickup points. As the process should be socially and economically profitable, the task of vehicle dispatching is highly challenging, specially due to the time-varying travel demands and traffic conditions. Due to the uneven distribution of travel demands, many idle vehicles could be generated during the operation in different subareas. Most of the existing works on vehicle dispatching system, designed static relocation centers to relocate idle vehicles. However, as traffic conditions and demand distribution dynamically change over time, the static solution can not fit the evolving situations. In this paper, we propose a dynamic future demand aware vehicle dispatching system. It can dynamically search the relocation centers considering both travel demand and traffic conditions. We evaluate the system on real-world dataset, and compare with the existing state-of-the-art methods in our experiments in terms of several standard evaluation metrics and operation time. Through our experiments, we demonstrate that the proposed system significantly improves the serving ratio and with a very small increase in operation cost.
Abstract:A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Abstract:User cold-start recommendation is a long-standing challenge for recommender systems due to the fact that only a few interactions of cold-start users can be exploited. Recent studies seek to address this challenge from the perspective of meta learning, and most of them follow a manner of parameter initialization, where the model parameters can be learned by a few steps of gradient updates. While these gradient-based meta-learning models achieve promising performances to some extent, a fundamental problem of them is how to adapt the global knowledge learned from previous tasks for the recommendations of cold-start users more effectively. In this paper, we develop a novel meta-learning recommender called task-adaptive neural process (TaNP). TaNP is a new member of the neural process family, where making recommendations for each user is associated with a corresponding stochastic process. TaNP directly maps the observed interactions of each user to a predictive distribution, sidestepping some training issues in gradient-based meta-learning models. More importantly, to balance the trade-off between model capacity and adaptation reliability, we introduce a novel task-adaptive mechanism. It enables our model to learn the relevance of different tasks and customize the global knowledge to the task-related decoder parameters for estimating user preferences. We validate TaNP on multiple benchmark datasets in different experimental settings. Empirical results demonstrate that TaNP yields consistent improvements over several state-of-the-art meta-learning recommenders.
Abstract:Social events provide valuable insights into group social behaviors and public concerns and therefore have many applications in fields such as product recommendation and crisis management. The complexity and streaming nature of social messages make it appealing to address social event detection in an incremental learning setting, where acquiring, preserving, and extending knowledge are major concerns. Most existing methods, including those based on incremental clustering and community detection, learn limited amounts of knowledge as they ignore the rich semantics and structural information contained in social data. Moreover, they cannot memorize previously acquired knowledge. In this paper, we propose a novel Knowledge-Preserving Incremental Heterogeneous Graph Neural Network (KPGNN) for incremental social event detection. To acquire more knowledge, KPGNN models complex social messages into unified social graphs to facilitate data utilization and explores the expressive power of GNNs for knowledge extraction. To continuously adapt to the incoming data, KPGNN adopts contrastive loss terms that cope with a changing number of event classes. It also leverages the inductive learning ability of GNNs to efficiently detect events and extends its knowledge from previously unseen data. To deal with large social streams, KPGNN adopts a mini-batch subgraph sampling strategy for scalable training, and periodically removes obsolete data to maintain a dynamic embedding space. KPGNN requires no feature engineering and has few hyperparameters to tune. Extensive experiment results demonstrate the superiority of KPGNN over various baselines.
Abstract:Graph representation learning has attracted increasing research attention. However, most existing studies fuse all structural features and node attributes to provide an overarching view of graphs, neglecting finer substructures' semantics, and suffering from interpretation enigmas. This paper presents a novel hierarchical subgraph-level selection and embedding based graph neural network for graph classification, namely SUGAR, to learn more discriminative subgraph representations and respond in an explanatory way. SUGAR reconstructs a sketched graph by extracting striking subgraphs as the representative part of the original graph to reveal subgraph-level patterns. To adaptively select striking subgraphs without prior knowledge, we develop a reinforcement pooling mechanism, which improves the generalization ability of the model. To differentiate subgraph representations among graphs, we present a self-supervised mutual information mechanism to encourage subgraph embedding to be mindful of the global graph structural properties by maximizing their mutual information. Extensive experiments on six typical bioinformatics datasets demonstrate a significant and consistent improvement in model quality with competitive performance and interpretability.
Abstract:Knowledge Graph (KG) has attracted more and more companies' attention for its ability to connect different types of data in meaningful ways and support rich data services. However, the data isolation problem limits the performance of KG and prevents its further development. That is, multiple parties have their own KGs but they cannot share with each other due to regulation or competition reasons. Therefore, how to conduct privacy preserving KG becomes an important research question to answer. That is, multiple parties conduct KG related tasks collaboratively on the basis of protecting the privacy of multiple KGs. To date, there is few work on solving the above KG isolation problem. In this paper, to fill this gap, we summarize the open problems for privacy preserving KG in data isolation setting and propose possible solutions for them. Specifically, we summarize the open problems in privacy preserving KG from four aspects, i.e., merging, query, representation, and completion. We present these problems in details and propose possible technical solutions for them. Moreover, we present three privacy preserving KG-aware applications and simply describe how can our proposed techniques be applied into these applications.
Abstract:While numerous approaches have been developed to embed graphs into either Euclidean or hyperbolic spaces, they do not fully utilize the information available in graphs, or lack the flexibility to model intrinsic complex graph geometry. To utilize the strength of both Euclidean and hyperbolic geometries, we develop a novel Geometry Interaction Learning (GIL) method for graphs, a well-suited and efficient alternative for learning abundant geometric properties in graph. GIL captures a more informative internal structural features with low dimensions while maintaining conformal invariance of each space. Furthermore, our method endows each node the freedom to determine the importance of each geometry space via a flexible dual feature interaction learning and probability assembling mechanism. Promising experimental results are presented for five benchmark datasets on node classification and link prediction tasks.