Abstract:Reinforcement Learning (RL) suffers from sample inefficiency in sparse reward domains, and the problem is pronounced if there are stochastic transitions. To improve the sample efficiency, reward shaping is a well-studied approach to introduce intrinsic rewards that can help the RL agent converge to an optimal policy faster. However, designing a useful reward shaping function specific to each problem is challenging, even for domain experts. They would either have to rely on task-specific domain knowledge or provide an expert demonstration independently for each task. Given, that Large Language Models (LLMs) have rapidly gained prominence across a magnitude of natural language tasks, we aim to answer the following question: Can we leverage LLMs to construct a reward shaping function that can boost the sample efficiency of an RL agent? In this work, we aim to leverage off-the-shelf LLMs to generate a guide policy by solving a simpler deterministic abstraction of the original problem that can then be used to construct the reward shaping function for the downstream RL agent. Given the ineffectiveness of directly prompting LLMs, we propose MEDIC: a framework that augments LLMs with a Model-based feEDback critIC, which verifies LLM-generated outputs, to generate a possibly sub-optimal but valid plan for the abstract problem. Our experiments across domains from the BabyAI environment suite show 1) the effectiveness of augmenting LLMs with MEDIC, 2) a significant improvement in the sample complexity of PPO and A2C-based RL agents when guided by our LLM-generated plan, and finally, 3) pave the direction for further explorations of how these models can be used to augment existing RL pipelines.
Abstract:Counterfactual examples are frequently used for model development and evaluation in many natural language processing (NLP) tasks. Although methods for automated counterfactual generation have been explored, such methods depend on models such as pre-trained language models that are then fine-tuned on auxiliary, often task-specific datasets. Collecting and annotating such datasets for counterfactual generation is labor intensive and therefore, infeasible in practice. Therefore, in this work, we focus on a novel problem setting: \textit{zero-shot counterfactual generation}. To this end, we propose a structured way to utilize large language models (LLMs) as general purpose counterfactual example generators. We hypothesize that the instruction-following and textual understanding capabilities of recent LLMs can be effectively leveraged for generating high quality counterfactuals in a zero-shot manner, without requiring any training or fine-tuning. Through comprehensive experiments on various downstream tasks in natural language processing (NLP), we demonstrate the efficacy of LLMs as zero-shot counterfactual generators in evaluating and explaining black-box NLP models.
Abstract:Recent advancements in large language models (LLMs) have achieved promising performances across various applications. Nonetheless, the ongoing challenge of integrating long-tail knowledge continues to impede the seamless adoption of LLMs in specialized domains. In this work, we introduce DALK, a.k.a. Dynamic Co-Augmentation of LLMs and KG, to address this limitation and demonstrate its ability on studying Alzheimer's Disease (AD), a specialized sub-field in biomedicine and a global health priority. With a synergized framework of LLM and KG mutually enhancing each other, we first leverage LLM to construct an evolving AD-specific knowledge graph (KG) sourced from AD-related scientific literature, and then we utilize a coarse-to-fine sampling method with a novel self-aware knowledge retrieval approach to select appropriate knowledge from the KG to augment LLM inference capabilities. The experimental results, conducted on our constructed AD question answering (ADQA) benchmark, underscore the efficacy of DALK. Additionally, we perform a series of detailed analyses that can offer valuable insights and guidelines for the emerging topic of mutually enhancing KG and LLM. We will release the code and data at https://github.com/David-Li0406/DALK.
Abstract:In this paper, we aim to adapt a model at test-time using a few unlabeled data to address distribution shifts. To tackle the challenges of extracting domain knowledge from a limited amount of data, it is crucial to utilize correlated information from pre-trained backbones and source domains. Previous studies fail to utilize recent foundation models with strong out-of-distribution generalization. Additionally, domain-centric designs are not flavored in their works. Furthermore, they employ the process of modelling source domains and the process of learning to adapt independently into disjoint training stages. In this work, we propose an approach on top of the pre-computed features of the foundation model. Specifically, we build a knowledge bank to learn the transferable knowledge from source domains. Conditioned on few-shot target data, we introduce a domain prompt generator to condense the knowledge bank into a domain-specific prompt. The domain prompt then directs the visual features towards a particular domain via a guidance module. Moreover, we propose a domain-aware contrastive loss and employ meta-learning to facilitate domain knowledge extraction. Extensive experiments are conducted to validate the domain knowledge extraction. The proposed method outperforms previous work on 5 large-scale benchmarks including WILDS and DomainNet.
Abstract:Content moderation faces a challenging task as social media's ability to spread hate speech contrasts with its role in promoting global connectivity. With rapidly evolving slang and hate speech, the adaptability of conventional deep learning to the fluid landscape of online dialogue remains limited. In response, causality inspired disentanglement has shown promise by segregating platform specific peculiarities from universal hate indicators. However, its dependency on available ground truth target labels for discerning these nuances faces practical hurdles with the incessant evolution of platforms and the mutable nature of hate speech. Using confidence based reweighting and contrastive regularization, this study presents HATE WATCH, a novel framework of weakly supervised causal disentanglement that circumvents the need for explicit target labeling and effectively disentangles input features into invariant representations of hate. Empirical validation across platforms two with target labels and two without positions HATE WATCH as a novel method in cross platform hate speech detection with superior performance. HATE WATCH advances scalable content moderation techniques towards developing safer online communities.
Abstract:In this paper, we introduce GoodDrag, a novel approach to improve the stability and image quality of drag editing. Unlike existing methods that struggle with accumulated perturbations and often result in distortions, GoodDrag introduces an AlDD framework that alternates between drag and denoising operations within the diffusion process, effectively improving the fidelity of the result. We also propose an information-preserving motion supervision operation that maintains the original features of the starting point for precise manipulation and artifact reduction. In addition, we contribute to the benchmarking of drag editing by introducing a new dataset, Drag100, and developing dedicated quality assessment metrics, Dragging Accuracy Index and Gemini Score, utilizing Large Multimodal Models. Extensive experiments demonstrate that the proposed GoodDrag compares favorably against the state-of-the-art approaches both qualitatively and quantitatively. The project page is https://gooddrag.github.io.
Abstract:Facial affective behavior analysis (FABA) is crucial for understanding human mental states from images. However, traditional approaches primarily deploy models to discriminate among discrete emotion categories, and lack the fine granularity and reasoning capability for complex facial behaviors. The advent of Multi-modal Large Language Models (MLLMs) has been proven successful in general visual understanding tasks. However, directly harnessing MLLMs for FABA is challenging due to the scarcity of datasets and benchmarks, neglecting facial prior knowledge, and low training efficiency. To address these challenges, we introduce (i) an instruction-following dataset for two FABA tasks, e.g., emotion and action unit recognition, (ii) a benchmark FABA-Bench with a new metric considering both recognition and generation ability, and (iii) a new MLLM "EmoLA" as a strong baseline to the community. Our initiative on the dataset and benchmarks reveal the nature and rationale of facial affective behaviors, i.e., fine-grained facial movement, interpretability, and reasoning. Moreover, to build an effective and efficient FABA MLLM, we introduce a facial prior expert module with face structure knowledge and a low-rank adaptation module into pre-trained MLLM. We conduct extensive experiments on FABA-Bench and four commonly-used FABA datasets. The results demonstrate that the proposed facial prior expert can boost the performance and EmoLA achieves the best results on our FABA-Bench. On commonly-used FABA datasets, EmoLA is competitive rivaling task-specific state-of-the-art models.
Abstract:With the advancement in capabilities of Large Language Models (LLMs), one major step in the responsible and safe use of such LLMs is to be able to detect text generated by these models. While supervised AI-generated text detectors perform well on text generated by older LLMs, with the frequent release of new LLMs, building supervised detectors for identifying text from such new models would require new labeled training data, which is infeasible in practice. In this work, we tackle this problem and propose a domain generalization framework for the detection of AI-generated text from unseen target generators. Our proposed framework, EAGLE, leverages the labeled data that is available so far from older language models and learns features invariant across these generators, in order to detect text generated by an unknown target generator. EAGLE learns such domain-invariant features by combining the representational power of self-supervised contrastive learning with domain adversarial training. Through our experiments we demonstrate how EAGLE effectively achieves impressive performance in detecting text generated by unseen target generators, including recent state-of-the-art ones such as GPT-4 and Claude, reaching detection scores of within 4.7% of a fully supervised detector.
Abstract:Cross-modal retrieval (CMR) aims to establish interaction between different modalities, among which supervised CMR is emerging due to its flexibility in learning semantic category discrimination. Despite the remarkable performance of previous supervised CMR methods, much of their success can be attributed to the well-annotated data. However, even for unimodal data, precise annotation is expensive and time-consuming, and it becomes more challenging with the multimodal scenario. In practice, massive multimodal data are collected from the Internet with coarse annotation, which inevitably introduces noisy labels. Training with such misleading labels would bring two key challenges -- enforcing the multimodal samples to \emph{align incorrect semantics} and \emph{widen the heterogeneous gap}, resulting in poor retrieval performance. To tackle these challenges, this work proposes UOT-RCL, a Unified framework based on Optimal Transport (OT) for Robust Cross-modal Retrieval. First, we propose a semantic alignment based on partial OT to progressively correct the noisy labels, where a novel cross-modal consistent cost function is designed to blend different modalities and provide precise transport cost. Second, to narrow the discrepancy in multi-modal data, an OT-based relation alignment is proposed to infer the semantic-level cross-modal matching. Both of these two components leverage the inherent correlation among multi-modal data to facilitate effective cost function. The experiments on three widely-used cross-modal retrieval datasets demonstrate that our UOT-RCL surpasses the state-of-the-art approaches and significantly improves the robustness against noisy labels.
Abstract:The scaling of Large Language Models (LLMs) for retrieval-based tasks, particularly in Retrieval Augmented Generation (RAG), faces significant memory constraints, especially when fine-tuning extensive prompt sequences. Current open-source libraries support full-model inference and fine-tuning across multiple GPUs but fall short of accommodating the efficient parameter distribution required for retrieved context. Addressing this gap, we introduce a novel framework for PEFT-compatible fine-tuning of Llama-2 models, leveraging distributed training. Our framework uniquely utilizes JAX's just-in-time (JIT) compilation and tensor-sharding for efficient resource management, thereby enabling accelerated fine-tuning with reduced memory requirements. This advancement significantly improves the scalability and feasibility of fine-tuning LLMs for complex RAG applications, even on systems with limited GPU resources. Our experiments show more than 12x improvement in runtime compared to Hugging Face/DeepSpeed implementation with four GPUs while consuming less than half the VRAM per GPU.