Abstract:The rapid advancement of Large Language Models (LLMs) has significantly influenced various domains, leveraging their exceptional few-shot and zero-shot learning capabilities. In this work, we aim to explore and understand the LLMs-based feature selection methods from a data-centric perspective. We begin by categorizing existing feature selection methods with LLMs into two groups: data-driven feature selection which requires samples values to do statistical inference and text-based feature selection which utilizes prior knowledge of LLMs to do semantical associations using descriptive context. We conduct extensive experiments in both classification and regression tasks with LLMs in various sizes (e.g., GPT-4, ChatGPT and LLaMA-2). Our findings emphasize the effectiveness and robustness of text-based feature selection methods and showcase their potentials using a real-world medical application. We also discuss the challenges and future opportunities in employing LLMs for feature selection, offering insights for further research and development in this emerging field.
Abstract:This work focuses on AIGC detection to develop universal detectors capable of identifying various types of forgery images. Recent studies have found large pre-trained models, such as CLIP, are effective for generalizable deepfake detection along with linear classifiers. However, two critical issues remain unresolved: 1) understanding why CLIP features are effective on deepfake detection through a linear classifier; and 2) exploring the detection potential of CLIP. In this study, we delve into the underlying mechanisms of CLIP's detection capabilities by decoding its detection features into text and performing word frequency analysis. Our finding indicates that CLIP detects deepfakes by recognizing similar concepts (Fig. \ref{fig:fig1} a). Building on this insight, we introduce Category Common Prompt CLIP, called C2P-CLIP, which integrates the category common prompt into the text encoder to inject category-related concepts into the image encoder, thereby enhancing detection performance (Fig. \ref{fig:fig1} b). Our method achieves a 12.41\% improvement in detection accuracy compared to the original CLIP, without introducing additional parameters during testing. Comprehensive experiments conducted on two widely-used datasets, encompassing 20 generation models, validate the efficacy of the proposed method, demonstrating state-of-the-art performance. The code is available at \url{https://github.com/chuangchuangtan/C2P-CLIP-DeepfakeDetection}
Abstract:Model attribution for machine-generated disinformation poses a significant challenge in understanding its origins and mitigating its spread. This task is especially challenging because modern large language models (LLMs) produce disinformation with human-like quality. Additionally, the diversity in prompting methods used to generate disinformation complicates accurate source attribution. These methods introduce domain-specific features that can mask the fundamental characteristics of the models. In this paper, we introduce the concept of model attribution as a domain generalization problem, where each prompting method represents a unique domain. We argue that an effective attribution model must be invariant to these domain-specific features. It should also be proficient in identifying the originating models across all scenarios, reflecting real-world detection challenges. To address this, we introduce a novel approach based on Supervised Contrastive Learning. This method is designed to enhance the model's robustness to variations in prompts and focuses on distinguishing between different source LLMs. We evaluate our model through rigorous experiments involving three common prompting methods: ``open-ended'', ``rewriting'', and ``paraphrasing'', and three advanced LLMs: ``llama 2'', ``chatgpt'', and ``vicuna''. Our results demonstrate the effectiveness of our approach in model attribution tasks, achieving state-of-the-art performance across diverse and unseen datasets.
Abstract:Decentralized social media platforms like Bluesky Social (Bluesky) have made it possible to publicly disclose some user behaviors with millisecond-level precision. Embracing Bluesky's principles of open-source and open-data, we present the first collection of the temporal dynamics of user-driven social interactions. BlueTempNet integrates multiple types of networks into a single multi-network, including user-to-user interactions (following and blocking users) and user-to-community interactions (creating and joining communities). Communities are user-formed groups in custom Feeds, where users subscribe to posts aligned with their interests. Following Bluesky's public data policy, we collect existing Bluesky Feeds, including the users who liked and generated these Feeds, and provide tools to gather users' social interactions within a date range. This data-collection strategy captures past user behaviors and supports the future data collection of user behavior.
Abstract:Large Language Models (LLMs) are proficient at generating coherent and contextually relevant text but face challenges when addressing knowledge-intensive queries in domain-specific and factual question-answering tasks. Retrieval-augmented generation (RAG) systems mitigate this by incorporating external knowledge sources, such as structured knowledge graphs (KGs). However, LLMs often struggle to produce accurate answers despite access to KG-extracted information containing necessary facts. Our study investigates this dilemma by analyzing error patterns in existing KG-based RAG methods and identifying eight critical failure points. We observed that these errors predominantly occur due to insufficient focus on discerning the question's intent and adequately gathering relevant context from the knowledge graph facts. Drawing on this analysis, we propose the Mindful-RAG approach, a framework designed for intent-based and contextually aligned knowledge retrieval. This method explicitly targets the identified failures and offers improvements in the correctness and relevance of responses provided by LLMs, representing a significant step forward from existing methods.
Abstract:Despite recent advancements in detecting disinformation generated by large language models (LLMs), current efforts overlook the ever-evolving nature of this disinformation. In this work, we investigate a challenging yet practical research problem of detecting evolving LLM-generated disinformation. Disinformation evolves constantly through the rapid development of LLMs and their variants. As a consequence, the detection model faces significant challenges. First, it is inefficient to train separate models for each disinformation generator. Second, the performance decreases in scenarios when evolving LLM-generated disinformation is encountered in sequential order. To address this problem, we propose DELD (Detecting Evolving LLM-generated Disinformation), a parameter-efficient approach that jointly leverages the general fact-checking capabilities of pre-trained language models (PLM) and the independent disinformation generation characteristics of various LLMs. In particular, the learned characteristics are concatenated sequentially to facilitate knowledge accumulation and transformation. DELD addresses the issue of label scarcity by integrating the semantic embeddings of disinformation with trainable soft prompts to elicit model-specific knowledge. Our experiments show that \textit{DELD} significantly outperforms state-of-the-art methods. Moreover, our method provides critical insights into the unique patterns of disinformation generation across different LLMs, offering valuable perspectives in this line of research.
Abstract:Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs) by integrating external knowledge bases, improving their performance in applications like fact-checking and information searching. In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases by injecting deceptive content into the retrieval database, intentionally changing the model's behavior. This threat is critical as it mirrors real-world usage scenarios where RAG systems interact with publicly accessible knowledge bases, such as web scrapings and user-contributed data pools. To be more realistic, we target a realistic setting where the adversary has no knowledge of users' queries, knowledge base data, and the LLM parameters. We demonstrate that it is possible to exploit the model successfully through crafted content uploads with access to the retriever. Our findings emphasize an urgent need for security measures in the design and deployment of RAG systems to prevent potential manipulation and ensure the integrity of machine-generated content.
Abstract:The proliferation of Large Language Models (LLMs) poses challenges in detecting and mitigating digital deception, as these models can emulate human conversational patterns and facilitate chat-based social engineering (CSE) attacks. This study investigates the dual capabilities of LLMs as both facilitators and defenders against CSE threats. We develop a novel dataset, SEConvo, simulating CSE scenarios in academic and recruitment contexts, and designed to examine how LLMs can be exploited in these situations. Our findings reveal that, while off-the-shelf LLMs generate high-quality CSE content, their detection capabilities are suboptimal, leading to increased operational costs for defense. In response, we propose ConvoSentinel, a modular defense pipeline that improves detection at both the message and the conversation levels, offering enhanced adaptability and cost-effectiveness. The retrieval-augmented module in ConvoSentinel identifies malicious intent by comparing messages to a database of similar conversations, enhancing CSE detection at all stages. Our study highlights the need for advanced strategies to leverage LLMs in cybersecurity.
Abstract:Wetlands are important to communities, offering benefits ranging from water purification, and flood protection to recreation and tourism. Therefore, identifying and prioritizing potential wetland areas is a critical decision problem. While data-driven solutions are feasible, this is complicated by significant data sparsity due to the low proportion of wetlands (3-6\%) in many areas of interest in the southwestern US. This makes it hard to develop data-driven models that can help guide the identification of additional wetland areas. To solve this limitation, we propose two strategies: (1) The first of these is knowledge transfer from regions with rich wetlands (such as the Eastern US) to sparser regions (such as the Southwestern area with few wetlands). Recognizing that these regions are likely to be very different from each other in terms of soil characteristics, population distribution, and land use, we propose a domain disentanglement strategy that identifies and transfers only the applicable aspects of the learned model. (2) We complement this with a spatial data enrichment strategy that relies on an adaptive propagation mechanism. This mechanism differentiates between node pairs that have positive and negative impacts on each other for Graph Neural Networks (GNNs). To summarize, given two spatial cells belonging to different regions, we identify domain-specific and domain-shareable features, and, for each region, we rely on adaptive propagation to enrich features with the features of surrounding cells. We conduct rigorous experiments to substantiate our proposed method's effectiveness, robustness, and scalability compared to state-of-the-art baselines. Additionally, an ablation study demonstrates that each module is essential in prioritizing potential wetlands, which justifies our assumption.
Abstract:Feature interaction selection is a fundamental problem in commercial recommender systems. Most approaches equally enumerate all features and interactions by the same pre-defined operation under expert guidance. Their recommendation is unsatisfactory sometimes due to the following issues: (1)~They cannot ensure the learning abilities of models because their architectures are poorly adaptable to tasks and data; (2)~Useless features and interactions can bring unnecessary noise and complicate the training process. In this paper, we aim to adaptively evolve the model to select appropriate operations, features, and interactions under task guidance. Inspired by the evolution and functioning of natural organisms, we propose a novel \textsl{Cognitive EvoLutionary Learning (CELL)} framework, where cognitive ability refers to a property of organisms that allows them to react and survive in diverse environments. It consists of three stages, i.e., DNA search, genome search, and model functioning. Specifically, if we regard the relationship between models and tasks as the relationship between organisms and natural environments, interactions of feature pairs can be analogous to double-stranded DNA, of which relevant features and interactions can be analogous to genomes. Along this line, we diagnose the fitness of the model on operations, features, and interactions to simulate the survival rates of organisms for natural selection. We show that CELL can adaptively evolve into different models for different tasks and data, which enables practitioners to access off-the-shelf models. Extensive experiments on four real-world datasets demonstrate that CELL significantly outperforms state-of-the-art baselines. Also, we conduct synthetic experiments to ascertain that CELL can consistently discover the pre-defined interaction patterns for feature pairs.