Abstract:Federated Learning (FL) aims to train a shared model using data and computation power on distributed agents coordinated by a central server. Decentralized FL (DFL) utilizes local model exchange and aggregation between agents to reduce the communication and computation overheads on the central server. However, when agents are mobile, the communication opportunity between agents can be sporadic, largely hindering the convergence and accuracy of DFL. In this paper, we study delay-tolerant model spreading and aggregation enabled by model caching on mobile agents. Each agent stores not only its own model, but also models of agents encountered in the recent past. When two agents meet, they exchange their own models as well as the cached models. Local model aggregation works on all models in the cache. We theoretically analyze the convergence of DFL with cached models, explicitly taking into account the model staleness introduced by caching. We design and compare different model caching algorithms for different DFL and mobility scenarios. We conduct detailed case studies in a vehicular network to systematically investigate the interplay between agent mobility, cache staleness, and model convergence. In our experiments, cached DFL converges quickly, and significantly outperforms DFL without caching.
Abstract:Large language models (LLMs) have advanced financial applications, yet they often lack sufficient financial knowledge and struggle with tasks involving multi-modal inputs like tables and time series data. To address these limitations, we introduce \textit{Open-FinLLMs}, a series of Financial LLMs. We begin with FinLLaMA, pre-trained on a 52 billion token financial corpus, incorporating text, tables, and time-series data to embed comprehensive financial knowledge. FinLLaMA is then instruction fine-tuned with 573K financial instructions, resulting in FinLLaMA-instruct, which enhances task performance. Finally, we present FinLLaVA, a multimodal LLM trained with 1.43M image-text instructions to handle complex financial data types. Extensive evaluations demonstrate FinLLaMA's superior performance over LLaMA3-8B, LLaMA3.1-8B, and BloombergGPT in both zero-shot and few-shot settings across 19 and 4 datasets, respectively. FinLLaMA-instruct outperforms GPT-4 and other Financial LLMs on 15 datasets. FinLLaVA excels in understanding tables and charts across 4 multimodal tasks. Additionally, FinLLaMA achieves impressive Sharpe Ratios in trading simulations, highlighting its robust financial application capabilities. We will continually maintain and improve our models and benchmarks to support ongoing innovation in academia and industry.
Abstract:Large language models (LLMs) have demonstrated notable potential in conducting complex tasks and are increasingly utilized in various financial applications. However, high-quality sequential financial investment decision-making remains challenging. These tasks require multiple interactions with a volatile environment for every decision, demanding sufficient intelligence to maximize returns and manage risks. Although LLMs have been used to develop agent systems that surpass human teams and yield impressive investment returns, opportunities to enhance multi-sourced information synthesis and optimize decision-making outcomes through timely experience refinement remain unexplored. Here, we introduce the FinCon, an LLM-based multi-agent framework with CONceptual verbal reinforcement tailored for diverse FINancial tasks. Inspired by effective real-world investment firm organizational structures, FinCon utilizes a manager-analyst communication hierarchy. This structure allows for synchronized cross-functional agent collaboration towards unified goals through natural language interactions and equips each agent with greater memory capacity than humans. Additionally, a risk-control component in FinCon enhances decision quality by episodically initiating a self-critiquing mechanism to update systematic investment beliefs. The conceptualized beliefs serve as verbal reinforcement for the future agent's behavior and can be selectively propagated to the appropriate node that requires knowledge updates. This feature significantly improves performance while reducing unnecessary peer-to-peer communication costs. Moreover, FinCon demonstrates strong generalization capabilities in various financial tasks, including single stock trading and portfolio management.
Abstract:We study the data packet transmission problem (mmDPT) in dense cell-free millimeter wave (mmWave) networks, i.e., users sending data packet requests to access points (APs) via uplinks and APs transmitting requested data packets to users via downlinks. Our objective is to minimize the average delay in the system due to APs' limited service capacity and unreliable wireless channels between APs and users. This problem can be formulated as a restless multi-armed bandits problem with fairness constraint (RMAB-F). Since finding the optimal policy for RMAB-F is intractable, existing learning algorithms are computationally expensive and not suitable for practical dynamic dense mmWave networks. In this paper, we propose a structured reinforcement learning (RL) solution for mmDPT by exploiting the inherent structure encoded in RMAB-F. To achieve this, we first design a low-complexity and provably asymptotically optimal index policy for RMAB-F. Then, we leverage this structure information to develop a structured RL algorithm called mmDPT-TS, which provably achieves an \tilde{O}(\sqrt{T}) Bayesian regret. More importantly, mmDPT-TS is computation-efficient and thus amenable to practical implementation, as it fully exploits the structure of index policy for making decisions. Extensive emulation based on data collected in realistic mmWave networks demonstrate significant gains of mmDPT-TS over existing approaches.
Abstract:LLMs have transformed NLP and shown promise in various fields, yet their potential in finance is underexplored due to a lack of thorough evaluations and the complexity of financial tasks. This along with the rapid development of LLMs, highlights the urgent need for a systematic financial evaluation benchmark for LLMs. In this paper, we introduce FinBen, the first comprehensive open-sourced evaluation benchmark, specifically designed to thoroughly assess the capabilities of LLMs in the financial domain. FinBen encompasses 35 datasets across 23 financial tasks, organized into three spectrums of difficulty inspired by the Cattell-Horn-Carroll theory, to evaluate LLMs' cognitive abilities in inductive reasoning, associative memory, quantitative reasoning, crystallized intelligence, and more. Our evaluation of 15 representative LLMs, including GPT-4, ChatGPT, and the latest Gemini, reveals insights into their strengths and limitations within the financial domain. The findings indicate that GPT-4 leads in quantification, extraction, numerical reasoning, and stock trading, while Gemini shines in generation and forecasting; however, both struggle with complex extraction and forecasting, showing a clear need for targeted enhancements. Instruction tuning boosts simple task performance but falls short in improving complex reasoning and forecasting abilities. FinBen seeks to continuously evaluate LLMs in finance, fostering AI development with regular updates of tasks and models.
Abstract:Restless multi-armed bandits (RMAB) have been widely used to model sequential decision making problems with constraints. The decision maker (DM) aims to maximize the expected total reward over an infinite horizon under an "instantaneous activation constraint" that at most B arms can be activated at any decision epoch, where the state of each arm evolves stochastically according to a Markov decision process (MDP). However, this basic model fails to provide any fairness guarantee among arms. In this paper, we introduce RMAB-F, a new RMAB model with "long-term fairness constraints", where the objective now is to maximize the long term reward while a minimum long-term activation fraction for each arm must be satisfied. For the online RMAB-F setting (i.e., the underlying MDPs associated with each arm are unknown to the DM), we develop a novel reinforcement learning (RL) algorithm named Fair-UCRL. We prove that Fair-UCRL ensures probabilistic sublinear bounds on both the reward regret and the fairness violation regret. Compared with off-the-shelf RL methods, our Fair-UCRL is much more computationally efficient since it contains a novel exploitation that leverages a low-complexity index policy for making decisions. Experimental results further demonstrate the effectiveness of our Fair-UCRL.
Abstract:Decentralized learning has emerged as an alternative method to the popular parameter-server framework which suffers from high communication burden, single-point failure and scalability issues due to the need of a central server. However, most existing works focus on a single shared model for all workers regardless of the data heterogeneity problem, rendering the resulting model performing poorly on individual workers. In this work, we propose a novel personalized decentralized learning algorithm named DePRL via shared representations. Our algorithm relies on ideas from representation learning theory to learn a low-dimensional global representation collaboratively among all workers in a fully decentralized manner, and a user-specific low-dimensional local head leading to a personalized solution for each worker. We show that DePRL achieves, for the first time, a provable linear speedup for convergence with general non-linear representations (i.e., the convergence rate is improved linearly with respect to the number of workers). Experimental results support our theoretical findings showing the superiority of our method in data heterogeneous environments.
Abstract:Whittle index policy is a heuristic to the intractable restless multi-armed bandits (RMAB) problem. Although it is provably asymptotically optimal, finding Whittle indices remains difficult. In this paper, we present Neural-Q-Whittle, a Whittle index based Q-learning algorithm for RMAB with neural network function approximation, which is an example of nonlinear two-timescale stochastic approximation with Q-function values updated on a faster timescale and Whittle indices on a slower timescale. Despite the empirical success of deep Q-learning, the non-asymptotic convergence rate of Neural-Q-Whittle, which couples neural networks with two-timescale Q-learning largely remains unclear. This paper provides a finite-time analysis of Neural-Q-Whittle, where data are generated from a Markov chain, and Q-function is approximated by a ReLU neural network. Our analysis leverages a Lyapunov drift approach to capture the evolution of two coupled parameters, and the nonlinearity in value function approximation further requires us to characterize the approximation error. Combing these provide Neural-Q-Whittle with $\mathcal{O}(1/k^{2/3})$ convergence rate, where $k$ is the number of iterations.
Abstract:With the increasing demand for large-scale training of machine learning models, fully decentralized optimization methods have recently been advocated as alternatives to the popular parameter server framework. In this paradigm, each worker maintains a local estimate of the optimal parameter vector, and iteratively updates it by waiting and averaging all estimates obtained from its neighbors, and then corrects it on the basis of its local dataset. However, the synchronization phase is sensitive to stragglers. An efficient way to mitigate this effect is to consider asynchronous updates, where each worker computes stochastic gradients and communicates with other workers at its own pace. Unfortunately, fully asynchronous updates suffer from staleness of the stragglers' parameters. To address these limitations, we propose a fully decentralized algorithm DSGD-AAU with adaptive asynchronous updates via adaptively determining the number of neighbor workers for each worker to communicate with. We show that DSGD-AAU achieves a linear speedup for convergence (i.e., convergence performance increases linearly with respect to the number of workers). Experimental results on a suite of datasets and deep neural network models are provided to verify our theoretical results.
Abstract:Multi-player multi-armed bandit is an increasingly relevant decision-making problem, motivated by applications to cognitive radio systems. Most research for this problem focuses exclusively on the settings that players have \textit{full access} to all arms and receive no reward when pulling the same arm. Hence all players solve the same bandit problem with the goal of maximizing their cumulative reward. However, these settings neglect several important factors in many real-world applications, where players have \textit{limited access} to \textit{a dynamic local subset of arms} (i.e., an arm could sometimes be ``walking'' and not accessible to the player). To this end, this paper proposes a \textit{multi-player multi-armed walking bandits} model, aiming to address aforementioned modeling issues. The goal now is to maximize the reward, however, players can only pull arms from the local subset and only collect a full reward if no other players pull the same arm. We adopt Upper Confidence Bound (UCB) to deal with the exploration-exploitation tradeoff and employ distributed optimization techniques to properly handle collisions. By carefully integrating these two techniques, we propose a decentralized algorithm with near-optimal guarantee on the regret, and can be easily implemented to obtain competitive empirical performance.