the State Key Lab of Intelligent Control and Decision of Complex Systems and the School of Automation, Beijing Institute of Technology, Beijing, China, Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
Abstract:Model heterogeneous federated learning (MHeteroFL) enables FL clients to collaboratively train models with heterogeneous structures in a distributed fashion. However, existing MHeteroFL methods rely on training loss to transfer knowledge between the client model and the server model, resulting in limited knowledge exchange. To address this limitation, we propose the Federated model heterogeneous Matryoshka Representation Learning (FedMRL) approach for supervised learning tasks. It adds an auxiliary small homogeneous model shared by clients with heterogeneous local models. (1) The generalized and personalized representations extracted by the two models' feature extractors are fused by a personalized lightweight representation projector. This step enables representation fusion to adapt to local data distribution. (2) The fused representation is then used to construct Matryoshka representations with multi-dimensional and multi-granular embedded representations learned by the global homogeneous model header and the local heterogeneous model header. This step facilitates multi-perspective representation learning and improves model learning capability. Theoretical analysis shows that FedMRL achieves a $O(1/T)$ non-convex convergence rate. Extensive experiments on benchmark datasets demonstrate its superior model accuracy with low communication and computational costs compared to seven state-of-the-art baselines. It achieves up to 8.48% and 24.94% accuracy improvement compared with the state-of-the-art and the best same-category baseline, respectively.
Abstract:Recently, researchers have uncovered that neural retrieval models prefer AI-generated content (AIGC), called source bias. Compared to active search behavior, recommendation represents another important means of information acquisition, where users are more prone to source bias. Furthermore, delving into the recommendation scenario, as AIGC becomes integrated within the feedback loop involving users, data, and the recommender system, it progressively contaminates the candidate items, the user interaction history, and ultimately, the data used to train the recommendation models. How and to what extent the source bias affects the neural recommendation models within feedback loop remains unknown. In this study, we extend the investigation of source bias into the realm of recommender systems, specifically examining its impact across different phases of the feedback loop. We conceptualize the progression of AIGC integration into the recommendation content ecosystem in three distinct phases-HGC dominate, HGC-AIGC coexist, and AIGC dominance-each representing past, present, and future states, respectively. Through extensive experiments across three datasets from diverse domains, we demonstrate the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification throughout the feedback loop. This trend risks creating a recommender ecosystem with limited information source, such as AIGC, being disproportionately recommended. To counteract this bias and prevent its escalation in the feedback loop, we introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC. Our experimental results validate the effectiveness of the proposed debiasing method, confirming its potential to disrupt the feedback loop.
Abstract:The proliferation of Large Language Models (LLMs) has led to an influx of AI-generated content (AIGC) on the internet, transforming the corpus of Information Retrieval (IR) systems from solely human-written to a coexistence with LLM-generated content. The impact of this surge in AIGC on IR systems remains an open question, with the primary challenge being the lack of a dedicated benchmark for researchers. In this paper, we introduce Cocktail, a comprehensive benchmark tailored for evaluating IR models in this mixed-sourced data landscape of the LLM era. Cocktail consists of 16 diverse datasets with mixed human-written and LLM-generated corpora across various text retrieval tasks and domains. Additionally, to avoid the potential bias from previously included dataset information in LLMs, we also introduce an up-to-date dataset, named NQ-UTD, with queries derived from recent events. Through conducting over 1,000 experiments to assess state-of-the-art retrieval models against the benchmarked datasets in Cocktail, we uncover a clear trade-off between ranking performance and source bias in neural retrieval models, highlighting the necessity for a balanced approach in designing future IR systems. We hope Cocktail can serve as a foundational resource for IR research in the LLM era, with all data and code publicly available at \url{https://github.com/KID-22/Cocktail}.
Abstract:Driven by sustainability and economic considerations, two-sided recommendation platforms are required to satisfy the needs of both users and providers. Previous studies often indicate that the two sides' needs differ in urgency: providers have relatively long-term exposure requirements, while users desire short-term, accurate services. However, our empirical study reveals that existing methods for balancing fairness and accuracy often fail to ensure both long-term fairness and short-term accuracy under fluctuating user traffic in real applications. Notably, when user traffic is low, user experience tends to decline significantly. Then, we conducted a theoretical analysis confirming that user traffic is a crucial factor in such a trade-off problem. Ensuring accuracy and fairness under variable user traffic remains a challenge. Inspired by the bankruptcy problem in economics, we propose a novel fairness-aware re-ranking approach called BankFair. BankFair intuitively uses the Talmud rule to leverage periods of high user traffic to compensate for periods of low traffic, ensuring consistent user service while maintaining long-term fairness. BankFair is composed of two modules: (1) utilizing the Talmud rule to determine the necessary degree of fairness across varying user traffic periods, and (2) implementing an online re-ranking algorithm based on the fairness degree established by the Talmud rule. Experiments on one publicly available and one real industrial dataset demonstrate that BankFair outperforms all baselines in terms of both accuracy and provider fairness.
Abstract:Place recognition is a fundamental task for robotic application, allowing robots to perform loop closure detection within simultaneous localization and mapping (SLAM), and achieve relocalization on prior maps. Current range image-based networks use single-column convolution to maintain feature invariance to shifts in image columns caused by LiDAR viewpoint change.However, this raises the issues such as "restricted receptive fields" and "excessive focus on local regions", degrading the performance of networks. To address the aforementioned issues, we propose a lightweight circular convolutional Transformer network denoted as CCTNet, which boosts performance by capturing structural information in point clouds and facilitating crossdimensional interaction of spatial and channel information. Initially, a Circular Convolution Module (CCM) is introduced, expanding the network's perceptual field while maintaining feature consistency across varying LiDAR perspectives. Then, a Range Transformer Module (RTM) is proposed, which enhances place recognition accuracy in scenarios with movable objects by employing a combination of channel and spatial attention mechanisms. Furthermore, we propose an Overlap-based loss function, transforming the place recognition task from a binary loop closure classification into a regression problem linked to the overlap between LiDAR frames. Through extensive experiments on the KITTI and Ford Campus datasets, CCTNet surpasses comparable methods, achieving Recall@1 of 0.924 and 0.965, and Recall@1% of 0.990 and 0.993 on the test set, showcasing a superior performance. Results on the selfcollected dataset further demonstrate the proposed method's potential for practical implementation in complex scenarios to handle movable objects, showing improved generalization in various datasets.
Abstract:Deep reinforcement learning (DRL) is playing an increasingly important role in real-world applications. However, obtaining an optimally performing DRL agent for complex tasks, especially with sparse rewards, remains a significant challenge. The training of a DRL agent can be often trapped in a bottleneck without further progress. In this paper, we propose RICE, an innovative refining scheme for reinforcement learning that incorporates explanation methods to break through the training bottlenecks. The high-level idea of RICE is to construct a new initial state distribution that combines both the default initial states and critical states identified through explanation methods, thereby encouraging the agent to explore from the mixed initial states. Through careful design, we can theoretically guarantee that our refining scheme has a tighter sub-optimality bound. We evaluate RICE in various popular RL environments and real-world applications. The results demonstrate that RICE significantly outperforms existing refining schemes in enhancing agent performance.
Abstract:Model-heterogeneous personalized federated learning (MHPFL) enables FL clients to train structurally different personalized models on non-independent and identically distributed (non-IID) local data. Existing MHPFL methods focus on achieving client-level personalization, but cannot address batch-level data heterogeneity. To bridge this important gap, we propose a model-heterogeneous personalized Federated learning approach with Adaptive Feature Mixture (pFedAFM) for supervised learning tasks. It consists of three novel designs: 1) A sharing global homogeneous small feature extractor is assigned alongside each client's local heterogeneous model (consisting of a heterogeneous feature extractor and a prediction header) to facilitate cross-client knowledge fusion. The two feature extractors share the local heterogeneous model's prediction header containing rich personalized prediction knowledge to retain personalized prediction capabilities. 2) An iterative training strategy is designed to alternately train the global homogeneous small feature extractor and the local heterogeneous large model for effective global-local knowledge exchange. 3) A trainable weight vector is designed to dynamically mix the features extracted by both feature extractors to adapt to batch-level data heterogeneity. Theoretical analysis proves that pFedAFM can converge over time. Extensive experiments on 2 benchmark datasets demonstrate that it significantly outperforms 7 state-of-the-art MHPFL methods, achieving up to 7.93% accuracy improvement while incurring low communication and computation costs.
Abstract:Vector data management systems (VDMSs) have become an indispensable cornerstone in large-scale information retrieval and machine learning systems like large language models. To enhance the efficiency and flexibility of similarity search, VDMS exposes many tunable index parameters and system parameters for users to specify. However, due to the inherent characteristics of VDMS, automatic performance tuning for VDMS faces several critical challenges, which cannot be well addressed by the existing auto-tuning methods. In this paper, we introduce VDTuner, a learning-based automatic performance tuning framework for VDMS, leveraging multi-objective Bayesian optimization. VDTuner overcomes the challenges associated with VDMS by efficiently exploring a complex multi-dimensional parameter space without requiring any prior knowledge. Moreover, it is able to achieve a good balance between search speed and recall rate, delivering an optimal configuration. Extensive evaluations demonstrate that VDTuner can markedly improve VDMS performance (14.12% in search speed and 186.38% in recall rate) compared with default setting, and is more efficient compared with state-of-the-art baselines (up to 3.57 times faster in terms of tuning time). In addition, VDTuner is scalable to specific user preference and cost-aware optimization objective. VDTuner is available online at https://github.com/tiannuo-yang/VDTuner.
Abstract:Segment Anything Models (SAM) have made significant advancements in image segmentation, allowing users to segment target portions of an image with a single click (i.e., user prompt). Given its broad applications, the robustness of SAM against adversarial attacks is a critical concern. While recent works have explored adversarial attacks against a pre-defined prompt/click, their threat model is not yet realistic: (1) they often assume the user-click position is known to the attacker (point-based attack), and (2) they often operate under a white-box setting with limited transferability. In this paper, we propose a more practical region-level attack where attackers do not need to know the precise user prompt. The attack remains effective as the user clicks on any point on the target object in the image, hiding the object from SAM. Also, by adapting a spectrum transformation method, we make the attack more transferable under a black-box setting. Both control experiments and testing against real-world SAM services confirm its effectiveness.
Abstract:Reconfigurable Intelligent Surfaces (RIS) show great promise in the realm of 6th generation (6G) wireless systems, particularly in the areas of localization and communication. Their cost-effectiveness and energy efficiency enable the integration of numerous passive and reflective elements, enabling near-field propagation. In this paper, we tackle the challenges of RIS-aided 3D localization and synchronization in multipath environments, focusing on the near-field of mmWave systems. Specifically, our approach involves formulating a maximum likelihood (ML) estimation problem for the channel parameters. To initiate this process, we leverage a combination of canonical polyadic decomposition (CPD) and orthogonal matching pursuit (OMP) to obtain coarse estimates of the time of arrival (ToA) and angle of departure (AoD) under the far-field approximation. Subsequently, distances are estimated using $l_{1}$-regularization based on a near-field model. Additionally, we introduce a refinement phase employing the spatial alternating generalized expectation maximization (SAGE) algorithm. Finally, a weighted least squares approach is applied to convert channel parameters into position and clock offset estimates. To extend the estimation algorithm to ultra-large (UL) RIS-assisted localization scenarios, it is further enhanced to reduce errors associated with far-field approximations, especially in the presence of significant near-field effects, achieved by narrowing the RIS aperture. Moreover, the Cram\'er-Rao Bound (CRB) is derived and the RIS phase shifts are optimized to improve the positioning accuracy. Numerical results affirm the efficacy of the proposed estimation algorithm.