Alert button
Picture for Evis Sala

Evis Sala

Alert button

on behalf of the AIX-COVNET collaboration

Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation

Sep 20, 2022
Thomas Buddenkotte, Lorena Escudero Sanchez, Mireia Crispin-Ortuzar, Ramona Woitek, Cathal McCague, James D. Brenton, Ozan Öktem, Evis Sala, Leonardo Rundo

Figure 1 for Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Figure 2 for Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Figure 3 for Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Figure 4 for Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Viaarxiv icon

Classification of datasets with imputed missing values: does imputation quality matter?

Jun 16, 2022
Tolou Shadbahr, Michael Roberts, Jan Stanczuk, Julian Gilbey, Philip Teare, Sören Dittmer, Matthew Thorpe, Ramon Vinas Torne, Evis Sala, Pietro Lio, Mishal Patel, AIX-COVNET Collaboration, James H. F. Rudd, Tuomas Mirtti, Antti Rannikko, John A. D. Aston, Jing Tang, Carola-Bibiane Schönlieb

Figure 1 for Classification of datasets with imputed missing values: does imputation quality matter?
Figure 2 for Classification of datasets with imputed missing values: does imputation quality matter?
Figure 3 for Classification of datasets with imputed missing values: does imputation quality matter?
Figure 4 for Classification of datasets with imputed missing values: does imputation quality matter?
Viaarxiv icon

Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence

Nov 18, 2021
Xiang Bai, Hanchen Wang, Liya Ma, Yongchao Xu, Jiefeng Gan, Ziwei Fan, Fan Yang, Ke Ma, Jiehua Yang, Song Bai, Chang Shu, Xinyu Zou, Renhao Huang, Changzheng Zhang, Xiaowu Liu, Dandan Tu, Chuou Xu, Wenqing Zhang, Xi Wang, Anguo Chen, Yu Zeng, Dehua Yang, Ming-Wei Wang, Nagaraj Holalkere, Neil J. Halin, Ihab R. Kamel, Jia Wu, Xuehua Peng, Xiang Wang, Jianbo Shao, Pattanasak Mongkolwat, Jianjun Zhang, Weiyang Liu, Michael Roberts, Zhongzhao Teng, Lucian Beer, Lorena Escudero Sanchez, Evis Sala, Daniel Rubin, Adrian Weller, Joan Lasenby, Chuangsheng Zheng, Jianming Wang, Zhen Li, Carola-Bibiane Schönlieb, Tian Xia

Figure 1 for Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence
Figure 2 for Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence
Figure 3 for Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence
Figure 4 for Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence
Viaarxiv icon

Focal Attention Networks: optimising attention for biomedical image segmentation

Oct 31, 2021
Michael Yeung, Leonardo Rundo, Evis Sala, Carola-Bibiane Schönlieb, Guang Yang

Figure 1 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 2 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 3 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 4 for Focal Attention Networks: optimising attention for biomedical image segmentation
Viaarxiv icon

Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation

Oct 31, 2021
Michael Yeung, Guang Yang, Evis Sala, Carola-Bibiane Schönlieb, Leonardo Rundo

Figure 1 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 2 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 3 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 4 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Viaarxiv icon

Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation

Oct 31, 2021
Michael Yeung, Leonardo Rundo, Yang Nan, Evis Sala, Carola-Bibiane Schönlieb, Guang Yang

Figure 1 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 2 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 3 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 4 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Viaarxiv icon

Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy

May 16, 2021
Michael Yeung, Evis Sala, Carola-Bibiane Schönlieb, Leonardo Rundo

Figure 1 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 2 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 3 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 4 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Viaarxiv icon

A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation

Feb 08, 2021
Michael Yeung, Evis Sala, Carola-Bibiane Schönlieb, Leonardo Rundo

Figure 1 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 2 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 3 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 4 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Viaarxiv icon

Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review

Sep 01, 2020
Michael Roberts, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, James H. F. Rudd, Evis Sala, Carola-Bibiane Schönlieb

Figure 1 for Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review
Figure 2 for Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review
Figure 3 for Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review
Figure 4 for Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review
Viaarxiv icon