Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation


Sep 20, 2022
Thomas Buddenkotte, Lorena Escudero Sanchez, Mireia Crispin-Ortuzar, Ramona Woitek, Cathal McCague, James D. Brenton, Ozan Ă–ktem, Evis Sala, Leonardo Rundo

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Focal Attention Networks: optimising attention for biomedical image segmentation


Oct 31, 2021
Michael Yeung, Leonardo Rundo, Evis Sala, Carola-Bibiane Schönlieb, Guang Yang

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation


Oct 31, 2021
Michael Yeung, Guang Yang, Evis Sala, Carola-Bibiane Schönlieb, Leonardo Rundo

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation


Oct 31, 2021
Michael Yeung, Leonardo Rundo, Yang Nan, Evis Sala, Carola-Bibiane Schönlieb, Guang Yang

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Computer-Assisted Analysis of Biomedical Images


Jun 04, 2021
Leonardo Rundo

Add code

* PhD Thesis in Computer Science, University of Milano-Bicocca, Milan, Italy 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy


May 16, 2021
Michael Yeung, Evis Sala, Carola-Bibiane Schönlieb, Leonardo Rundo

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation


Feb 08, 2021
Michael Yeung, Evis Sala, Carola-Bibiane Schönlieb, Leonardo Rundo

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction


Jul 24, 2020
Changhee Han, Leonardo Rundo, Kohei Murao, Tomoyuki Noguchi, Yuki Shimahara, Zoltan Adam Milacski, Saori Koshino, Evis Sala, Hideki Nakayama, Shinichi Satoh

Add code

* 21 pages, 11 figures, submitted to BMC Bioinformatics. arXiv admin note: substantial text overlap with arXiv:1906.06114 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning


May 15, 2020
Maureen van Eijnatten, Leonardo Rundo, K. Joost Batenburg, Felix Lucka, Emma Beddowes, Carlos Caldas, Ferdia A. Gallagher, Evis Sala, Carola-Bibiane Schönlieb, Ramona Woitek

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Bridging the gap between AI and Healthcare sides: towards developing clinically relevant AI-powered diagnosis systems


Jan 12, 2020
Changhee Han, Leonardo Rundo, Kohei Murao, Takafumi Nemoto, Hideki Nakayama, Shin'ichi Satoh

Add code

* 10 pages, 1 figure, submitted to CARS 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>