Princeton University
Abstract:People break up, miscarry, and lose loved ones. Their online streaming and shopping recommendations, however, do not necessarily update, and may serve as unhappy reminders of their loss. When users want to renege on their past actions, they expect the recommender platforms to erase selective data at the model level. Ideally, given any specified user history, the recommender can unwind or "forget", as if the record was not part of training. To that end, this paper focuses on simple but widely deployed bi-linear models for recommendations based on matrix completion. Without incurring the cost of re-training, and without degrading the model unnecessarily, we develop Unlearn-ALS by making a few key modifications to the fine-tuning procedure under Alternating Least Squares optimisation, thus applicable to any bi-linear models regardless of the training procedure. We show that Unlearn-ALS is consistent with retraining without \emph{any} model degradation and exhibits rapid convergence, making it suitable for a large class of existing recommenders.
Abstract:Random-feature-based attention (RFA) is an efficient approximation of softmax attention with linear runtime and space complexity. However, the approximation gap between RFA and conventional softmax attention is not well studied. Built upon previous progress of RFA, we characterize this gap through the lens of control variates and show that RFA can be decomposed into a sum of multiple control variate estimators for each element in the sequence. This new framework reveals that exact softmax attention can be recovered from RFA by manipulating each control variate. Besides, it allows us to develop a more flexible form of control variates, resulting in a novel attention mechanism that significantly reduces the approximation gap while maintaining linear complexity. Extensive experiments demonstrate that our model outperforms state-of-the-art efficient attention mechanisms on both vision and language tasks.
Abstract:Methods to detect malignant lesions from screening mammograms are usually trained with fully annotated datasets, where images are labelled with the localisation and classification of cancerous lesions. However, real-world screening mammogram datasets commonly have a subset that is fully annotated and another subset that is weakly annotated with just the global classification (i.e., without lesion localisation). Given the large size of such datasets, researchers usually face a dilemma with the weakly annotated subset: to not use it or to fully annotate it. The first option will reduce detection accuracy because it does not use the whole dataset, and the second option is too expensive given that the annotation needs to be done by expert radiologists. In this paper, we propose a middle-ground solution for the dilemma, which is to formulate the training as a weakly- and semi-supervised learning problem that we refer to as malignant breast lesion detection with incomplete annotations. To address this problem, our new method comprises two stages, namely: 1) pre-training a multi-view mammogram classifier with weak supervision from the whole dataset, and 2) extending the trained classifier to become a multi-view detector that is trained with semi-supervised student-teacher learning, where the training set contains fully and weakly-annotated mammograms. We provide extensive detection results on two real-world screening mammogram datasets containing incomplete annotations, and show that our proposed approach achieves state-of-the-art results in the detection of malignant breast lesions with incomplete annotations.
Abstract:Prototypical part network (ProtoPNet) methods have been designed to achieve interpretable classification by associating predictions with a set of training prototypes, which we refer to as trivial (i.e., easy-to-learn) prototypes because they are trained to lie far from the classification boundary in the feature space. Note that it is possible to make an analogy between ProtoPNet and support vector machine (SVM) given that the classification from both methods relies on computing similarity with a set of training points (i.e., trivial prototypes in ProtoPNet, and support vectors in SVM). However, while trivial prototypes are located far from the classification boundary, support vectors are located close to this boundary, and we argue that this discrepancy with the well-established SVM theory can result in ProtoPNet models with suboptimal classification accuracy. In this paper, we aim to improve the classification accuracy of ProtoPNet with a new method to learn support prototypes that lie near the classification boundary in the feature space, as suggested by the SVM theory. In addition, we target the improvement of classification interpretability with a new model, named ST-ProtoPNet, which exploits our support prototypes and the trivial prototypes to provide complementary interpretability information. Experimental results on CUB-200-2011, Stanford Cars, and Stanford Dogs datasets demonstrate that the proposed method achieves state-of-the-art classification accuracy and produces more visually meaningful and diverse prototypes.
Abstract:Learning with noisy-labels has become an important research topic in computer vision where state-of-the-art (SOTA) methods explore: 1) prediction disagreement with co-teaching strategy that updates two models when they disagree on the prediction of training samples; and 2) sample selection to divide the training set into clean and noisy sets based on small training loss. However, the quick convergence of co-teaching models to select the same clean subsets combined with relatively fast overfitting of noisy labels may induce the wrong selection of noisy label samples as clean, leading to an inevitable confirmation bias that damages accuracy. In this paper, we introduce our noisy-label learning approach, called Asymmetric Co-teaching (AsyCo), which introduces novel prediction disagreement that produces more consistent divergent results of the co-teaching models, and a new sample selection approach that does not require small-loss assumption to enable a better robustness to confirmation bias than previous methods. More specifically, the new prediction disagreement is achieved with the use of different training strategies, where one model is trained with multi-class learning and the other with multi-label learning. Also, the new sample selection is based on multi-view consensus, which uses the label views from training labels and model predictions to divide the training set into clean and noisy for training the multi-class model and to re-label the training samples with multiple top-ranked labels for training the multi-label model. Extensive experiments on synthetic and real-world noisy-label datasets show that AsyCo improves over current SOTA methods.
Abstract:Recent deep learning methods have achieved promising results in image shadow removal. However, their restored images still suffer from unsatisfactory boundary artifacts, due to the lack of degradation prior embedding and the deficiency in modeling capacity. Our work addresses these issues by proposing a unified diffusion framework that integrates both the image and degradation priors for highly effective shadow removal. In detail, we first propose a shadow degradation model, which inspires us to build a novel unrolling diffusion model, dubbed ShandowDiffusion. It remarkably improves the model's capacity in shadow removal via progressively refining the desired output with both degradation prior and diffusive generative prior, which by nature can serve as a new strong baseline for image restoration. Furthermore, ShadowDiffusion progressively refines the estimated shadow mask as an auxiliary task of the diffusion generator, which leads to more accurate and robust shadow-free image generation. We conduct extensive experiments on three popular public datasets, including ISTD, ISTD+, and SRD, to validate our method's effectiveness. Compared to the state-of-the-art methods, our model achieves a significant improvement in terms of PSNR, increasing from 31.69dB to 34.73dB over SRD dataset.
Abstract:Machine learning approaches have become popular for molecular modeling tasks, including molecular force fields and properties prediction. Traditional supervised learning methods suffer from scarcity of labeled data for particular tasks, motivating the use of large-scale dataset for other relevant tasks. We propose to pretrain neural networks on a dataset of 86 millions of molecules with atom charges and 3D geometries as inputs and molecular energies as labels. Experiments show that, compared to training from scratch, fine-tuning the pretrained model can significantly improve the performance for seven molecular property prediction tasks and two force field tasks. We also demonstrate that the learned representations from the pretrained model contain adequate information about molecular structures, by showing that linear probing of the representations can predict many molecular information including atom types, interatomic distances, class of molecular scaffolds, and existence of molecular fragments. Our results show that supervised pretraining is a promising research direction in molecular modeling
Abstract:Machine learning has become a promising approach for molecular modeling. Positional quantities, such as interatomic distances and bond angles, play a crucial role in molecule physics. The existing works rely on careful manual design of their representation. To model the complex nonlinearity in predicting molecular properties in an more end-to-end approach, we propose to encode the positional quantities with a learnable embedding that is continuous and differentiable. A regularization technique is employed to encourage embedding smoothness along the physical dimension. We experiment with a variety of molecular property and force field prediction tasks. Improved performance is observed for three different model architectures after plugging in the proposed positional encoding method. In addition, the learned positional encoding allows easier physics-based interpretation. We observe that tasks of similar physics have the similar learned positional encoding.
Abstract:Recommender system practitioners are facing increasing pressure to explain recommendations. We explore how to explain recommendations using counterfactual logic, i.e. "Had you not interacted with the following items before, it is likely we would not recommend this item." Compared to traditional explanation logic, counterfactual explanations are easier to understand and more technically verifiable. The major challenge of generating such explanations is the computational cost because it requires repeatedly retraining the models to obtain the effect on a recommendation caused by removing user (interaction) history. We propose a learning-based framework to generate counterfactual explanations. The key idea is to train a surrogate model to learn the effect of removing a subset of user history on the recommendation. To this end, we first artificially simulate the counterfactual outcomes on the recommendation after deleting subsets of history. Then we train surrogate models to learn the mapping between a history deletion and the change in the recommendation caused by the deletion. Finally, to generate an explanation, we find the history subset predicted by the surrogate model that is most likely to remove the recommendation. Through offline experiments and online user studies, we show our method, compared to baselines, can generate explanations that are more counterfactually valid and more satisfactory considered by users.
Abstract:State-of-the-art (SOTA) deep learning mammogram classifiers, trained with weakly-labelled images, often rely on global models that produce predictions with limited interpretability, which is a key barrier to their successful translation into clinical practice. On the other hand, prototype-based models improve interpretability by associating predictions with training image prototypes, but they are less accurate than global models and their prototypes tend to have poor diversity. We address these two issues with the proposal of BRAIxProtoPNet++, which adds interpretability to a global model by ensembling it with a prototype-based model. BRAIxProtoPNet++ distills the knowledge of the global model when training the prototype-based model with the goal of increasing the classification accuracy of the ensemble. Moreover, we propose an approach to increase prototype diversity by guaranteeing that all prototypes are associated with different training images. Experiments on weakly-labelled private and public datasets show that BRAIxProtoPNet++ has higher classification accuracy than SOTA global and prototype-based models. Using lesion localisation to assess model interpretability, we show BRAIxProtoPNet++ is more effective than other prototype-based models and post-hoc explanation of global models. Finally, we show that the diversity of the prototypes learned by BRAIxProtoPNet++ is superior to SOTA prototype-based approaches.