



Abstract:Developing robust models against adversarial perturbations has been an active area of research and many algorithms have been proposed to train individual robust models. Taking these pretrained robust models, we aim to study whether it is possible to create an ensemble to further improve robustness. Several previous attempts tackled this problem by ensembling the soft-label prediction and have been proved vulnerable based on the latest attack methods. In this paper, we show that if the robust training loss is diverse enough, a simple hard-label based voting ensemble can boost the robust error over each individual model. Furthermore, given a pool of robust models, we develop a principled way to select which models to ensemble. Finally, to verify the improved robustness, we conduct extensive experiments to study how to attack a voting-based ensemble and develop several new white-box attacks. On CIFAR-10 dataset, by ensembling several state-of-the-art pre-trained defense models, our method can achieve a 59.8% robust accuracy, outperforming all the existing defensive models without using additional data.




Abstract:Formal verification of neural networks (NNs) is a challenging and important problem. Existing efficient complete solvers typically require the branch-and-bound (BaB) process, which splits the problem domain into sub-domains and solves each sub-domain using faster but weaker incomplete verifiers, such as Linear Programming (LP) on linearly relaxed sub-domains. In this paper, we propose to use the backward mode linear relaxation based perturbation analysis (LiRPA) to replace LP during the BaB process, which can be efficiently implemented on the typical machine learning accelerators such as GPUs and TPUs. However, unlike LP, LiRPA when applied naively can produce much weaker bounds and even cannot check certain conflicts of sub-domains during splitting, making the entire procedure incomplete after BaB. To address these challenges, we apply a fast gradient based bound tightening procedure combined with batch splits and the design of minimal usage of LP bound procedure, enabling us to effectively use LiRPA on the accelerator hardware for the challenging complete NN verification problem and significantly outperform LP-based approaches. On a single GPU, we demonstrate an order of magnitude speedup compared to existing LP-based approaches.




Abstract:Deep neural network models are vulnerable to adversarial attacks. In many cases, malicious inputs intentionally crafted for one model can fool another model in the black-box attack setting. However, there is a lack of systematic studies on the transferability of adversarial examples and how to generate universal adversarial examples. In this paper, we systematically study the transferability of adversarial attacks for text classification models. In particular, we conduct extensive experiments to investigate how various factors, such as network architecture, input format, word embedding, and model capacity, affect the transferability of adversarial attacks. Based on these studies, we then propose universal black-box attack algorithms that can induce adversarial examples to attack almost all existing models. These universal adversarial examples reflect the defects of the learning process and the bias in the training dataset. Finally, we generalize these adversarial examples into universal word replacement rules that can be used for model diagnostics.




Abstract:We study the problem of efficient adversarial attacks on tree based ensembles such as gradient boosting decision trees (GBDTs) and random forests (RFs). Since these models are non-continuous step functions and gradient does not exist, most existing efficient adversarial attacks are not applicable. Although decision-based black-box attacks can be applied, they cannot utilize the special structure of trees. In our work, we transform the attack problem into a discrete search problem specially designed for tree ensembles, where the goal is to find a valid "leaf tuple" that leads to mis-classification while having the shortest distance to the original input. With this formulation, we show that a simple yet effective greedy algorithm can be applied to iteratively optimize the adversarial example by moving the leaf tuple to its neighborhood within hamming distance 1. Experimental results on several large GBDT and RF models with up to hundreds of trees demonstrate that our method can be thousands of times faster than the previous mixed-integer linear programming (MILP) based approach, while also providing smaller (better) adversarial examples than decision-based black-box attacks on general $\ell_p$ ($p=1, 2, \infty$) norm perturbations. Our code is available at https://github.com/chong-z/tree-ensemble-attack.




Abstract:Many optimizers have been proposed for training deep neural networks, and they often have multiple hyperparameters, which make it tricky to benchmark their performance. In this work, we propose a new benchmarking protocol to evaluate both end-to-end efficiency (training a model from scratch without knowing the best hyperparameter) and data-addition training efficiency (the previously selected hyperparameters are used for periodically re-training the model with newly collected data). For end-to-end efficiency, unlike previous work that assumes random hyperparameter tuning, which over-emphasizes the tuning time, we propose to evaluate with a bandit hyperparameter tuning strategy. A human study is conducted to show that our evaluation protocol matches human tuning behavior better than the random search. For data-addition training, we propose a new protocol for assessing the hyperparameter sensitivity to data shift. We then apply the proposed benchmarking framework to 7 optimizers and various tasks, including computer vision, natural language processing, reinforcement learning, and graph mining. Our results show that there is no clear winner across all the tasks.




Abstract:Recent papers have demonstrated that ensemble stumps and trees could be vulnerable to small input perturbations, so robustness verification and defense for those models have become an important research problem. However, due to the structure of decision trees, where each node makes decision purely based on one feature value, all the previous works only consider the $\ell_\infty$ norm perturbation. To study robustness with respect to a general $\ell_p$ norm perturbation, one has to consider the correlation between perturbations on different features, which has not been handled by previous algorithms. In this paper, we study the problem of robustness verification and certified defense with respect to general $\ell_p$ norm perturbations for ensemble decision stumps and trees. For robustness verification of ensemble stumps, we prove that complete verification is NP-complete for $p\in(0, \infty)$ while polynomial time algorithms exist for $p=0$ or $\infty$. For $p\in(0, \infty)$ we develop an efficient dynamic programming based algorithm for sound verification of ensemble stumps. For ensemble trees, we generalize the previous multi-level robustness verification algorithm to $\ell_p$ norm. We demonstrate the first certified defense method for training ensemble stumps and trees with respect to $\ell_p$ norm perturbations, and verify its effectiveness empirically on real datasets.




Abstract:Generative adversarial networks (GAN) have shown remarkable results in image generation tasks. High fidelity class-conditional GAN methods often rely on stabilization techniques by constraining the global Lipschitz continuity. Such regularization leads to less expressive models and slower convergence speed; other techniques, such as the large batch training, require unconventional computing power and are not widely accessible. In this paper, we develop an efficient algorithm, namely FastGAN (Free AdverSarial Training), to improve the speed and quality of GAN training based on the adversarial training technique. We benchmark our method on CIFAR10, a subset of ImageNet, and the full ImageNet datasets. We choose strong baselines such as SNGAN and SAGAN; the results demonstrate that our training algorithm can achieve better generation quality (in terms of the Inception score and Frechet Inception distance) with less overall training time. Most notably, our training algorithm brings ImageNet training to the broader public by requiring 2-4 GPUs.




Abstract:Multi-stage training and knowledge transfer, from a large-scale pretraining task to various finetuning tasks, have revolutionized natural language processing and computer vision resulting in state-of-the-art performance improvements. In this paper, we develop a multi-stage influence function score to track predictions from a finetuned model all the way back to the pretraining data. With this score, we can identify the pretraining examples in the pretraining task that contribute most to a prediction in the finetuning task. The proposed multi-stage influence function generalizes the original influence function for a single model in (Koh & Liang, 2017), thereby enabling influence computation through both pretrained and finetuned models. We study two different scenarios with the pretrained embeddings fixed or updated in the finetuning tasks. We test our proposed method in various experiments to show its effectiveness and potential applications.




Abstract:Despite neural networks have achieved prominent performance on many natural language processing (NLP) tasks, they are vulnerable to adversarial examples. In this paper, we propose Dirichlet Neighborhood Ensemble (DNE), a randomized smoothing method for training a robust model to defense substitution-based attacks. During training, DNE forms virtual sentences by sampling embedding vectors for each word in an input sentence from a convex hull spanned by the word and its synonyms, and it augments them with the training data. In such a way, the model is robust to adversarial attacks while maintaining the performance on the original clean data. DNE is agnostic to the network architectures and scales to large models for NLP applications. We demonstrate through extensive experimentation that our method consistently outperforms recently proposed defense methods by a significant margin across different network architectures and multiple data sets.




Abstract:This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution. With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based optimizer in an end-to-end manner. This formulation improves the generalization ability and induces stochasticity that naturally encourages exploration in the search space. Furthermore, to alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme that enables searching directly on large-scale tasks, eliminating the gap between search and evaluation phases. Extensive experiments demonstrate the effectiveness of our method. Specifically, we obtain a test error of 2.46% for CIFAR-10, 23.7% for ImageNet under the mobile setting. On NAS-Bench-201, we also achieve state-of-the-art results on all three datasets and provide insights for the effective design of neural architecture search algorithms.