Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Xuanqing Liu

Label Disentanglement in Partition-based Extreme Multilabel Classification

Jun 24, 2021
Xuanqing Liu, Wei-Cheng Chang, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon

  Access Paper or Ask Questions

How much progress have we made in neural network training? A New Evaluation Protocol for Benchmarking Optimizers

Oct 19, 2020
Yuanhao Xiong, Xuanqing Liu, Li-Cheng Lan, Yang You, Si Si, Cho-Jui Hsieh

  Access Paper or Ask Questions

Improving the Speed and Quality of GAN by Adversarial Training

Aug 07, 2020
Jiachen Zhong, Xuanqing Liu, Cho-Jui Hsieh

  Access Paper or Ask Questions

Provably Robust Metric Learning

Jun 12, 2020
Lu Wang, Xuanqing Liu, Jinfeng Yi, Yuan Jiang, Cho-Jui Hsieh

  Access Paper or Ask Questions

Evaluations and Methods for Explanation through Robustness Analysis

May 31, 2020
Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh

  Access Paper or Ask Questions

Learning to Encode Position for Transformer with Continuous Dynamical Model

Mar 13, 2020
Xuanqing Liu, Hsiang-Fu Yu, Inderjit Dhillon, Cho-Jui Hsieh

* Code to be released in 

  Access Paper or Ask Questions

Gradient Boosting Neural Networks: GrowNet

Feb 19, 2020
Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, Sathiya S. Keerthi

  Access Paper or Ask Questions

GraphDefense: Towards Robust Graph Convolutional Networks

Nov 11, 2019
Xiaoyun Wang, Xuanqing Liu, Cho-Jui Hsieh

  Access Paper or Ask Questions

A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning

Oct 30, 2019
Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, Cho-Jui Hsieh

* NeurIPS 2019 camera-ready 

  Access Paper or Ask Questions

Evaluating the Robustness of Nearest Neighbor Classifiers: A Primal-Dual Perspective

Jun 10, 2019
Lu Wang, Xuanqing Liu, Jinfeng Yi, Zhi-Hua Zhou, Cho-Jui Hsieh

  Access Paper or Ask Questions

Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise

Jun 05, 2019
Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh

  Access Paper or Ask Questions

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

May 20, 2019
Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh

* In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'19) 

  Access Paper or Ask Questions

Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network

Oct 01, 2018
Xuanqing Liu, Yao Li, Chongruo Wu, Cho-Jui Hsieh

* Code will be made available at 

  Access Paper or Ask Questions

Stochastic Second-order Methods for Non-convex Optimization with Inexact Hessian and Gradient

Sep 26, 2018
Liu Liu, Xuanqing Liu, Cho-Jui Hsieh, Dacheng Tao

  Access Paper or Ask Questions

Fast Variance Reduction Method with Stochastic Batch Size

Aug 07, 2018
Xuanqing Liu, Cho-Jui Hsieh

  Access Paper or Ask Questions

From Adversarial Training to Generative Adversarial Networks

Aug 03, 2018
Xuanqing Liu, Cho-Jui Hsieh

* NIPS 2018 submission, under review. v2: More experiments on comparing inception score, release code and some minor fixes 

  Access Paper or Ask Questions

Towards Robust Neural Networks via Random Self-ensemble

Aug 01, 2018
Xuanqing Liu, Minhao Cheng, Huan Zhang, Cho-Jui Hsieh

* ECCV 2018 camera ready 

  Access Paper or Ask Questions

An inexact subsampled proximal Newton-type method for large-scale machine learning

Aug 28, 2017
Xuanqing Liu, Cho-Jui Hsieh, Jason D. Lee, Yuekai Sun

  Access Paper or Ask Questions