Abstract:Convolutional neural networks (CNNs) have obtained remarkable performance via deep architectures. However, these CNNs often achieve poor robustness for image super-resolution (SR) under complex scenes. In this paper, we present a heterogeneous group SR CNN (HGSRCNN) via leveraging structure information of different types to obtain a high-quality image. Specifically, each heterogeneous group block (HGB) of HGSRCNN uses a heterogeneous architecture containing a symmetric group convolutional block and a complementary convolutional block in a parallel way to enhance internal and external relations of different channels for facilitating richer low-frequency structure information of different types. To prevent appearance of obtained redundant features, a refinement block with signal enhancements in a serial way is designed to filter useless information. To prevent loss of original information, a multi-level enhancement mechanism guides a CNN to achieve a symmetric architecture for promoting expressive ability of HGSRCNN. Besides, a parallel up-sampling mechanism is developed to train a blind SR model. Extensive experiments illustrate that the proposed HGSRCNN has obtained excellent SR performance in terms of both quantitative and qualitative analysis. Codes can be accessed at https://github.com/hellloxiaotian/HGSRCNN.
Abstract:Convolutional neural network (CNN) and Transformer have achieved great success in multimedia applications. However, little effort has been made to effectively and efficiently harmonize these two architectures to satisfy image deraining. This paper aims to unify these two architectures to take advantage of their learning merits for image deraining. In particular, the local connectivity and translation equivariance of CNN and the global aggregation ability of self-attention (SA) in Transformer are fully exploited for specific local context and global structure representations. Based on the observation that rain distribution reveals the degradation location and degree, we introduce degradation prior to help background recovery and accordingly present the association refinement deraining scheme. A novel multi-input attention module (MAM) is proposed to associate rain perturbation removal and background recovery. Moreover, we equip our model with effective depth-wise separable convolutions to learn the specific feature representations and trade off computational complexity. Extensive experiments show that our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average, but only accounts for 11.7\% and 42.1\% of its computational cost and parameters. The source code is available at https://github.com/kuijiang94/Magic-ELF.
Abstract:Understanding foggy image sequence in the driving scenes is critical for autonomous driving, but it remains a challenging task due to the difficulty in collecting and annotating real-world images of adverse weather. Recently, the self-training strategy has been considered a powerful solution for unsupervised domain adaptation, which iteratively adapts the model from the source domain to the target domain by generating target pseudo labels and re-training the model. However, the selection of confident pseudo labels inevitably suffers from the conflict between sparsity and accuracy, both of which will lead to suboptimal models. To tackle this problem, we exploit the characteristics of the foggy image sequence of driving scenes to densify the confident pseudo labels. Specifically, based on the two discoveries of local spatial similarity and adjacent temporal correspondence of the sequential image data, we propose a novel Target-Domain driven pseudo label Diffusion (TDo-Dif) scheme. It employs superpixels and optical flows to identify the spatial similarity and temporal correspondence, respectively and then diffuses the confident but sparse pseudo labels within a superpixel or a temporal corresponding pair linked by the flow. Moreover, to ensure the feature similarity of the diffused pixels, we introduce local spatial similarity loss and temporal contrastive loss in the model re-training stage. Experimental results show that our TDo-Dif scheme helps the adaptive model achieve 51.92% and 53.84% mean intersection-over-union (mIoU) on two publicly available natural foggy datasets (Foggy Zurich and Foggy Driving), which exceeds the state-of-the-art unsupervised domain adaptive semantic segmentation methods. Models and data can be found at https://github.com/velor2012/TDo-Dif.
Abstract:CNNs with strong learning abilities are widely chosen to resolve super-resolution problem. However, CNNs depend on deeper network architectures to improve performance of image super-resolution, which may increase computational cost in general. In this paper, we present an enhanced super-resolution group CNN (ESRGCNN) with a shallow architecture by fully fusing deep and wide channel features to extract more accurate low-frequency information in terms of correlations of different channels in single image super-resolution (SISR). Also, a signal enhancement operation in the ESRGCNN is useful to inherit more long-distance contextual information for resolving long-term dependency. An adaptive up-sampling operation is gathered into a CNN to obtain an image super-resolution model with low-resolution images of different sizes. Extensive experiments report that our ESRGCNN surpasses the state-of-the-arts in terms of SISR performance, complexity, execution speed, image quality evaluation and visual effect in SISR. Code is found at https://github.com/hellloxiaotian/ESRGCNN.
Abstract:Visualizing information inside objects is an ever-lasting need to bridge the world from physics, chemistry, biology to computation. Among all tomographic techniques, terahertz (THz) computational imaging has demonstrated its unique sensing features to digitalize multi-dimensional object information in a non-destructive, non-ionizing, and non-invasive way. Applying modern signal processing and physics-guided modalities, THz computational imaging systems are now launched in various application fields in industrial inspection, security screening, chemical inspection and non-destructive evaluation. In this article, we overview recent advances in THz computational imaging modalities in the aspects of system configuration, wave propagation and interaction models, physics-guided algorithm for digitalizing interior information of imaged objects. Several image restoration and reconstruction issues based on multi-dimensional THz signals are further discussed, which provides a crosslink between material digitalization, functional property extraction, and multi-dimensional imager utilization from a signal processing perspective.
Abstract:Images taken in dynamic scenes may contain unwanted motion blur, which significantly degrades visual quality. Such blur causes short- and long-range region-specific smoothing artifacts that are often directional and non-uniform, which is difficult to be removed. Inspired by the current success of transformers on computer vision and image processing tasks, we develop, Stripformer, a transformer-based architecture that constructs intra- and inter-strip tokens to reweight image features in the horizontal and vertical directions to catch blurred patterns with different orientations. It stacks interlaced intra-strip and inter-strip attention layers to reveal blur magnitudes. In addition to detecting region-specific blurred patterns of various orientations and magnitudes, Stripformer is also a token-efficient and parameter-efficient transformer model, demanding much less memory usage and computation cost than the vanilla transformer but works better without relying on tremendous training data. Experimental results show that Stripformer performs favorably against state-of-the-art models in dynamic scene deblurring.
Abstract:This paper focuses on filter-level network pruning. A novel pruning method, termed CLR-RNF, is proposed. We first reveal a "long-tail" long-tail pruning problem in magnitude-based weight pruning methods, and then propose a computation-aware measurement for individual weight importance, followed by a Cross-Layer Ranking (CLR) of weights to identify and remove the bottom-ranked weights. Consequently, the per-layer sparsity makes up of the pruned network structure in our filter pruning. Then, we introduce a recommendation-based filter selection scheme where each filter recommends a group of its closest filters. To pick the preserved filters from these recommended groups, we further devise a k-Reciprocal Nearest Filter (RNF) selection scheme where the selected filters fall into the intersection of these recommended groups. Both our pruned network structure and the filter selection are non-learning processes, which thus significantly reduce the pruning complexity, and differentiate our method from existing works. We conduct image classification on CIFAR-10 and ImageNet to demonstrate the superiority of our CLR-RNF over the state-of-the-arts. For example, on CIFAR-10, CLR-RNF removes 74.1% FLOPs and 95.0% parameters from VGGNet-16 with even 0.3\% accuracy improvements. On ImageNet, it removes 70.2% FLOPs and 64.8% parameters from ResNet-50 with only 1.7% top-5 accuracy drops. Our project is at https://github.com/lmbxmu/CLR-RNF.
Abstract:Learning-based pre-simulation (i.e., layout-to-fabrication) models have been proposed to predict the fabrication-induced shape deformation from an IC layout to its fabricated circuit. Such models are usually driven by pairwise learning, involving a training set of layout patterns and their reference shape images after fabrication. However, it is expensive and time-consuming to collect the reference shape images of all layout clips for model training and updating. To address the problem, we propose a deep learning-based layout novelty detection scheme to identify novel (unseen) layout patterns, which cannot be well predicted by a pre-trained pre-simulation model. We devise a global-local novelty scoring mechanism to assess the potential novelty of a layout by exploiting two subnetworks: an autoencoder and a pretrained pre-simulation model. The former characterizes the global structural dissimilarity between a given layout and training samples, whereas the latter extracts a latent code representing the fabrication-induced local deformation. By integrating the global dissimilarity with the local deformation boosted by a self-attention mechanism, our model can accurately detect novelties without the ground-truth circuit shapes of test samples. Based on the detected novelties, we further propose two active-learning strategies to sample a reduced amount of representative layouts most worthy to be fabricated for acquiring their ground-truth circuit shapes. Experimental results demonstrate i) our method's effectiveness in layout novelty detection, and ii) our active-learning strategies' ability in selecting representative novel layouts for keeping a learning-based pre-simulation model updated.
Abstract:Although considerable progress has been made in semantic scene understanding under clear weather, it is still a tough problem under adverse weather conditions, such as dense fog, due to the uncertainty caused by imperfect observations. Besides, difficulties in collecting and labeling foggy images hinder the progress of this field. Considering the success in semantic scene understanding under clear weather, we think it is reasonable to transfer knowledge learned from clear images to the foggy domain. As such, the problem becomes to bridge the domain gap between clear images and foggy images. Unlike previous methods that mainly focus on closing the domain gap caused by fog -- defogging the foggy images or fogging the clear images, we propose to alleviate the domain gap by considering fog influence and style variation simultaneously. The motivation is based on our finding that the style-related gap and the fog-related gap can be divided and closed respectively, by adding an intermediate domain. Thus, we propose a new pipeline to cumulatively adapt style, fog and the dual-factor (style and fog). Specifically, we devise a unified framework to disentangle the style factor and the fog factor separately, and then the dual-factor from images in different domains. Furthermore, we collaborate the disentanglement of three factors with a novel cumulative loss to thoroughly disentangle these three factors. Our method achieves the state-of-the-art performance on three benchmarks and shows generalization ability in rainy and snowy scenes.
Abstract:We study the problem of efficiently summarizing a short video into several keyframes, leveraging recent progress in fast graph sampling. Specifically, we first construct a similarity path graph (SPG) $\mathcal{G}$, represented by graph Laplacian matrix $\mathbf{L}$, where the similarities between adjacent frames are encoded as positive edge weights. We show that maximizing the smallest eigenvalue $\lambda_{\min}(\mathbf{B})$ of a coefficient matrix $\mathbf{B} = \text{diag}(\mathbf{a}) + \mu \mathbf{L}$, where $\mathbf{a}$ is the binary keyframe selection vector, is equivalent to minimizing a worst-case signal reconstruction error. We prove that, after partitioning $\mathcal{G}$ into $Q$ sub-graphs $\{\mathcal{G}^q\}^Q_{q=1}$, the smallest Gershgorin circle theorem (GCT) lower bound of $Q$ corresponding coefficient matrices -- $\min_q \lambda^-_{\min}(\mathbf{B}^q)$ -- is a lower bound for $\lambda_{\min}(\mathbf{B})$. This inspires a fast graph sampling algorithm to iteratively partition $\mathcal{G}$ into $Q$ sub-graphs using $Q$ samples (keyframes), while maximizing $\lambda^-_{\min}(\mathbf{B}^q)$ for each sub-graph $\mathcal{G}^q$. Experimental results show that our algorithm achieves comparable video summarization performance as state-of-the-art methods, at a substantially reduced complexity.