Abstract:Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
Abstract:Retrieval of legal knowledge by the general public is a challenging problem due to the technicality of the professional knowledge and the lack of fundamental understanding by laypersons on the subject. Traditional information retrieval techniques assume that users are capable of formulating succinct and precise queries for effective document retrieval. In practice, however, the wide gap between the highly technical contents and untrained users makes legal knowledge retrieval very difficult. We propose a methodology, called QBR, which employs a Questions Bank (QB) as an effective medium for bridging the knowledge gap. We show how the QB is used to derive training samples to enhance the embedding of knowledge units within documents, which leads to effective fine-grained knowledge retrieval. We discuss and evaluate through experiments various advantages of QBR over traditional methods. These include more accurate, efficient, and explainable document retrieval, better comprehension of retrieval results, and highly effective fine-grained knowledge retrieval. We also present some case studies and show that QBR achieves social impact by assisting citizens to resolve everyday legal concerns.
Abstract:Access to legal information is fundamental to access to justice. Yet accessibility refers not only to making legal documents available to the public, but also rendering legal information comprehensible to them. A vexing problem in bringing legal information to the public is how to turn formal legal documents such as legislation and judgments, which are often highly technical, to easily navigable and comprehensible knowledge to those without legal education. In this study, we formulate a three-step approach for bringing legal knowledge to laypersons, tackling the issues of navigability and comprehensibility. First, we translate selected sections of the law into snippets (called CLIC-pages), each being a small piece of article that focuses on explaining certain technical legal concept in layperson's terms. Second, we construct a Legal Question Bank (LQB), which is a collection of legal questions whose answers can be found in the CLIC-pages. Third, we design an interactive CLIC Recommender (CRec). Given a user's verbal description of a legal situation that requires a legal solution, CRec interprets the user's input and shortlists questions from the question bank that are most likely relevant to the given legal situation and recommends their corresponding CLIC pages where relevant legal knowledge can be found. In this paper we focus on the technical aspects of creating an LQB. We show how large-scale pre-trained language models, such as GPT-3, can be used to generate legal questions. We compare machine-generated questions (MGQs) against human-composed questions (HCQs) and find that MGQs are more scalable, cost-effective, and more diversified, while HCQs are more precise. We also show a prototype of CRec and illustrate through an example how our 3-step approach effectively brings relevant legal knowledge to the public.
Abstract:Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at \href{https://qiushisun.github.io/OS-Genesis-Home/}{OS-Genesis Homepage}.
Abstract:Graph learning has become indispensable for interpreting and harnessing relational data in diverse fields, ranging from recommendation systems to social network analysis. In this context, a variety of GNNs have emerged as promising methodologies for encoding the structural information of graphs. By effectively capturing the graph's underlying structure, these GNNs have shown great potential in enhancing performance in graph learning tasks, such as link prediction and node classification. However, despite their successes, a significant challenge persists: these advanced methods often face difficulties in generalizing to unseen graph data that significantly differs from the training instances. In this work, our aim is to advance the graph learning paradigm by developing a general graph foundation model. This model is designed to understand the complex topological patterns present in diverse graph data, enabling it to excel in zero-shot graph learning tasks across different downstream datasets. To achieve this goal, we address several key technical challenges in our OpenGraph model. Firstly, we propose a unified graph tokenizer to adapt our graph model to generalize well on unseen graph data, even when the underlying graph properties differ significantly from those encountered during training. Secondly, we develop a scalable graph transformer as the foundational encoder, which effectively captures node-wise dependencies within the global topological context. Thirdly, we introduce a data augmentation mechanism enhanced by a LLM to alleviate the limitations of data scarcity in real-world scenarios. Extensive experiments validate the effectiveness of our framework. By adapting our OpenGraph to new graph characteristics and comprehending the nuances of diverse graphs, our approach achieves remarkable zero-shot graph learning performance across various settings and domains.
Abstract:Global popularity (GP) bias is the phenomenon that popular items are recommended much more frequently than they should be, which goes against the goal of providing personalized recommendations and harms user experience and recommendation accuracy. Many methods have been proposed to reduce GP bias but they fail to notice the fundamental problem of GP, i.e., it considers popularity from a \textit{global} perspective of \textit{all users} and uses a single set of popular items, and thus cannot capture the interests of individual users. As such, we propose a user-aware version of item popularity named \textit{personal popularity} (PP), which identifies different popular items for each user by considering the users that share similar interests. As PP models the preferences of individual users, it naturally helps to produce personalized recommendations and mitigate GP bias. To integrate PP into recommendation, we design a general \textit{personal popularity aware counterfactual} (PPAC) framework, which adapts easily to existing recommendation models. In particular, PPAC recognizes that PP and GP have both direct and indirect effects on recommendations and controls direct effects with counterfactual inference techniques for unbiased recommendations. All codes and datasets are available at \url{https://github.com/Stevenn9981/PPAC}.
Abstract:Graph neural networks (GNNs) have emerged as the state-of-the-art paradigm for collaborative filtering (CF). To improve the representation quality over limited labeled data, contrastive learning has attracted attention in recommendation and benefited graph-based CF model recently. However, the success of most contrastive methods heavily relies on manually generating effective contrastive views for heuristic-based data augmentation. This does not generalize across different datasets and downstream recommendation tasks, which is difficult to be adaptive for data augmentation and robust to noise perturbation. To fill this crucial gap, this work proposes a unified Automated Collaborative Filtering (AutoCF) to automatically perform data augmentation for recommendation. Specifically, we focus on the generative self-supervised learning framework with a learnable augmentation paradigm that benefits the automated distillation of important self-supervised signals. To enhance the representation discrimination ability, our masked graph autoencoder is designed to aggregate global information during the augmentation via reconstructing the masked subgraph structures. Experiments and ablation studies are performed on several public datasets for recommending products, venues, and locations. Results demonstrate the superiority of AutoCF against various baseline methods. We release the model implementation at https://github.com/HKUDS/AutoCF.
Abstract:We propose knowledge internalization (KI), which aims to complement the lexical knowledge into neural dialog models. Instead of further conditioning the knowledge-grounded dialog (KGD) models on externally retrieved knowledge, we seek to integrate knowledge about each input token internally into the model's parameters. To tackle the challenge due to the large scale of lexical knowledge, we adopt the contrastive learning approach and create an effective token-level lexical knowledge retriever that requires only weak supervision mined from Wikipedia. We demonstrate the effectiveness and general applicability of our approach on various datasets and diversified model structures.
Abstract:Heterogeneous Information Networks (HINs) capture complex relations among entities of various kinds and have been used extensively to improve the effectiveness of various data mining tasks, such as in recommender systems. Many existing HIN-based recommendation algorithms utilize hand-crafted meta-paths to extract semantic information from the networks. These algorithms rely on extensive domain knowledge with which the best set of meta-paths can be selected. For applications where the HINs are highly complex with numerous node and link types, the approach of hand-crafting a meta-path set is too tedious and error-prone. To tackle this problem, we propose the Reinforcement learning-based Meta-path Selection (RMS) framework to select effective meta-paths and to incorporate them into existing meta-path-based recommenders. To identify high-quality meta-paths, RMS trains a reinforcement learning (RL) based policy network(agent), which gets rewards from the performance on the downstream recommendation tasks. We design a HIN-based recommendation model, HRec, that effectively uses the meta-path information. We further integrate HRec with RMS and derive our recommendation solution, RMS-HRec, that automatically utilizes the effective meta-paths. Experiments on real datasets show that our algorithm can significantly improve the performance of recommendation models by capturing important meta-paths automatically.
Abstract:A neural multimodal machine translation (MMT) system is one that aims to perform better translation by extending conventional text-only translation models with multimodal information. Many recent studies report improvements when equipping their models with the multimodal module, despite the controversy of whether such improvements indeed come from the multimodal part. We revisit the contribution of multimodal information in MMT by devising two interpretable MMT models. To our surprise, although our models replicate similar gains as recently developed multimodal-integrated systems achieved, our models learn to ignore the multimodal information. Upon further investigation, we discover that the improvements achieved by the multimodal models over text-only counterparts are in fact results of the regularization effect. We report empirical findings that highlight the importance of MMT models' interpretability, and discuss how our findings will benefit future research.