Abstract:Retrieval of legal knowledge by the general public is a challenging problem due to the technicality of the professional knowledge and the lack of fundamental understanding by laypersons on the subject. Traditional information retrieval techniques assume that users are capable of formulating succinct and precise queries for effective document retrieval. In practice, however, the wide gap between the highly technical contents and untrained users makes legal knowledge retrieval very difficult. We propose a methodology, called QBR, which employs a Questions Bank (QB) as an effective medium for bridging the knowledge gap. We show how the QB is used to derive training samples to enhance the embedding of knowledge units within documents, which leads to effective fine-grained knowledge retrieval. We discuss and evaluate through experiments various advantages of QBR over traditional methods. These include more accurate, efficient, and explainable document retrieval, better comprehension of retrieval results, and highly effective fine-grained knowledge retrieval. We also present some case studies and show that QBR achieves social impact by assisting citizens to resolve everyday legal concerns.
Abstract:Access to legal information is fundamental to access to justice. Yet accessibility refers not only to making legal documents available to the public, but also rendering legal information comprehensible to them. A vexing problem in bringing legal information to the public is how to turn formal legal documents such as legislation and judgments, which are often highly technical, to easily navigable and comprehensible knowledge to those without legal education. In this study, we formulate a three-step approach for bringing legal knowledge to laypersons, tackling the issues of navigability and comprehensibility. First, we translate selected sections of the law into snippets (called CLIC-pages), each being a small piece of article that focuses on explaining certain technical legal concept in layperson's terms. Second, we construct a Legal Question Bank (LQB), which is a collection of legal questions whose answers can be found in the CLIC-pages. Third, we design an interactive CLIC Recommender (CRec). Given a user's verbal description of a legal situation that requires a legal solution, CRec interprets the user's input and shortlists questions from the question bank that are most likely relevant to the given legal situation and recommends their corresponding CLIC pages where relevant legal knowledge can be found. In this paper we focus on the technical aspects of creating an LQB. We show how large-scale pre-trained language models, such as GPT-3, can be used to generate legal questions. We compare machine-generated questions (MGQs) against human-composed questions (HCQs) and find that MGQs are more scalable, cost-effective, and more diversified, while HCQs are more precise. We also show a prototype of CRec and illustrate through an example how our 3-step approach effectively brings relevant legal knowledge to the public.