Abstract:Field education is the signature pedagogy of social work, yet providing timely and objective feedback during training is constrained by the availability of instructors and counseling clients. In this paper, we present SWITCH, the Social Work Interactive Training Chatbot. SWITCH integrates realistic client simulation, real-time counseling skill classification, and a Motivational Interviewing (MI) progression system into the training workflow. To model a client, SWITCH uses a cognitively grounded profile comprising static fields (e.g., background, beliefs) and dynamic fields (e.g., emotions, automatic thoughts, openness), allowing the agent's behavior to evolve throughout a session realistically. The skill classification module identifies the counseling skills from the user utterances, and feeds the result to the MI controller that regulates the MI stage transitions. To enhance classification accuracy, we study in-context learning with retrieval over annotated transcripts, and a fine-tuned BERT multi-label classifier. In the experiments, we demonstrated that both BERT-based approach and in-context learning outperforms the baseline with big margin. SWITCH thereby offers a scalable, low-cost, and consistent training workflow that complements field education, and allows supervisors to focus on higher-level mentorship.
Abstract:Model editing has recently emerged as a popular paradigm for efficiently updating knowledge in LLMs. A central desideratum of updating knowledge is to balance editing efficacy, i.e., the successful injection of target knowledge, and specificity (also known as edit locality), i.e., the preservation of existing non-target knowledge. However, we find that existing specificity evaluation protocols are inadequate for this purpose. We systematically elaborated on the three fundamental issues it faces. Beyond the conceptual issues, we further empirically demonstrate that existing specificity metrics are weakly correlated with the strength of specificity regularizers. We also find that current metrics lack sufficient sensitivity, rendering them ineffective at distinguishing the specificity performance of different methods. Finally, we propose a constructive evaluation protocol. Under this protocol, the conflict between open-ended LLMs and the assumption of determined answers is eliminated, query-independent fluency biases are avoided, and the evaluation strictness can be smoothly adjusted within a near-continuous space. Experiments across various LLMs, datasets, and editing methods show that metrics derived from the proposed protocol are more sensitive to changes in the strength of specificity regularizers and exhibit strong correlation with them, enabling more fine-grained discrimination of different methods' knowledge preservation capabilities.