Abstract:Conventional fixed-orientation antenna (FOA) arrays offer limited degrees of freedom (DoF) for flexible beamforming such as null steering. To address this limitation, we propose a new rotatable antenna array (RAA) architecture in this paper, which enables three-dimensional (3D) rotational control of an antenna array to provide enhanced spatial flexibility for null steering. To characterize its performance, we aim to jointly optimize the 3D rotational angles of the RAA, to maximize the beam gain over a given desired direction, while nulling those over multiple interference directions under zero-forcing (ZF) beamforming. However, this problem is non-convex and challenging to tackle due to the highly nonlinear expression of the beam gain in terms of the rotational angles. To gain insights, we first examine several special cases including both isotropic and directional antenna radiation patterns, deriving the conditions under which full beam gain can be achieved over the desired direction while meeting the nulling constraints for interference directions. These conditions clearly indicate that compared with FOA arrays, RAAs can significantly relax the angular separation requirement for achieving effective null steering. For other general cases, we propose a sequential update algorithm, that iteratively refines the 3D rotational angles by discretizing the 3D angular search space. To avoid undesired local optimum, a Gibbs sampling (GS) procedure is also employed between two consecutive rounds of sequential update for solution exploration. Simulation results verify our analytical results and show superior null-steering performance of RAAs to FOA arrays.
Abstract:Movable antenna (MA) is a promising technology for improving the performance of wireless communication systems by providing new degrees-of-freedom (DoFs) in antenna position optimization. However, existing works on MA systems have mostly considered element-wise single-layer MA (SL-MA) arrays, where all the MAs move within the given movable region, hence inevitably incurring high control complexity and hardware cost in practice. To address this issue, we propose in this letter a new two-layer MA array (TL-MA), where the positions of MAs are jointly determined by the large-scale movement of multiple subarrays and the small-scale fine-tuning of per-subarray MAs. In particular, an optimization problem is formulated to maximize the sum-rate of the TL-MA-aided communication system by jointly optimizing the subarray-positions, per-subarray (relative) MA positions, and receive beamforming. To solve this non-convex problem, we propose an alternating optimization (AO)-based particle swarm optimization (PSO) algorithm, which alternately optimizes the positions of subarrays and per-subarray MAs, given the optimal receive beamforming. Numerical results verify that the proposed TL-MA significantly reduces the sum-displacement of MA motors (i.e., the total moving distances of all motors) of element-wise SL-MA, while achieving comparable rate performance.
Abstract:Rotatable antenna (RA) is a promising technology that exploits new spatial degrees of freedom (DoFs) to improve wireless communication and sensing performance. In this letter, we investigate an RA-enabled secure communication system where confidential information is transmitted from an RA-based access point (AP) to a single-antenna legitimate user in the presence of multiple eavesdroppers. We aim to maximize the achievable secrecy rate by jointly optimizing the transmit beamforming and the deflection angles of all RAs. Accordingly, we propose an efficient alternating optimization (AO) algorithm to obtain a high-quality suboptimal solution in an iterative manner, where the generalized Rayleigh quotient-based beamforming is applied and the RAs' deflection angles are optimized by the successive convex approximation (SCA). Simulation results show that the proposed RA-enabled secure communication system achieves significant improvement in achievable secrecy rate as compared to various benchmark schemes.
Abstract:In this letter, we propose to deploy rotatable antennas (RAs) at the base station (BS) to enhance both communication and sensing (C&S) performances, by exploiting a new spatial degree-of-freedom (DoF) offered by array rotation. Specifically, we formulate a multi-objective optimization problem to simultaneously maximize the sum-rate of multiple communication users and minimize the Cram\'er-Rao bound (CRB) for target angle estimation, by jointly optimizing the transmit beamforming vectors and the array rotation angle at the BS. To solve this problem, we first equivalently decompose it into two subproblems, corresponding to an inner problem for beamforming optimization and an outer problem for array rotation optimization. Although these two subproblems are non-convex, we obtain their high-quality solutions by applying the block coordinate descent (BCD) technique and one-dimensional exhaustive search, respectively. Moreover, we show that for the communication-only case, RAs provide an additional rotation gain to improve communication performance; while for the sensing-only case, the equivalent spatial aperture can be enlarged by RAs for achieving higher sensing accuracy. Finally, numerical results are presented to showcase the performance gains of RAs over fixed-rotation antennas in integrated sensing and communications (ISAC).




Abstract:Reconfigurable intelligent surface (RIS)-aided vehicle-to-everything (V2X) communication has emerged as a crucial solution for providing reliable data services to vehicles on the road. However, in delay-sensitive or high-mobility communications, the rapid movement of vehicles can lead to random scattering in the environment and time-selective fading in the channel. In view of this, we investigate in this paper an innovative linear model with low-complexity transmitter signal design and receiver detection methods, which boost stability in fast-fading environments and reduce channel training overhead. Specifically, considering the differences in hardware design and signal processing at the receiving end between uplink and downlink communication systems, distinct solutions are proposed. Accordingly, we first integrate the Rician channel introduced by the RIS with the corresponding signal processing algorithms to model the RIS-aided downlink communication system as a Doppler-robust linear model. Inspired by this property, we design a precoding scheme based on the linear model to reduce the complexity of precoding. Then, by leveraging the linear model and the large-scale antenna array at the base station (BS) side, we improve the linear model for the uplink communication system and derive its asymptotic performance in closed-form. Simulation results demonstrate the performance advantages of the proposed RIS-aided high-mobility communication system compared to other benchmark schemes.




Abstract:Different types of intelligent reflecting surfaces (IRS) are exploited for assisting wireless communications. The joint use of passive IRS (PIRS) and active IRS (AIRS) emerges as a promising solution owing to their complementary advantages. They can be integrated into a single hybrid active-passive IRS (HIRS) or deployed in a distributed manner, which poses challenges in determining the IRS element allocation and placement for rate maximization. In this paper, we investigate the capacity of an IRS-aided wireless communication system with both active and passive elements. Specifically, we consider three deployment schemes: 1) base station (BS)-HIRS-user (BHU); 2) BS-AIRS-PIRS-user (BAPU); 3) BS-PIRS-AIRS-user (BPAU). Under the line-of-sight channel model, we formulate a rate maximization problem via a joint optimization of the IRS element allocation and placement. We first derive the optimized number of active and passive elements for BHU, BAPU, and BPAU schemes, respectively. Then, low-complexity HIRS/AIRS placement strategies are provided. To obtain more insights, we characterize the system capacity scaling orders for the three schemes with respect to the large total number of IRS elements, amplification power budget, and BS transmit power. Finally, simulation results are presented to validate our theoretical findings and show the performance difference among the BHU, BAPU, and BPAU schemes with the proposed joint design under various system setups.




Abstract:Fluid antenna system (FAS) and movable antenna (MA) have recently emerged as promising technologies to exploit new spatial degrees of freedom (DoFs), which have attracted growing attention in wireless communication. In this paper, we propose a new rotatable antenna (RA) model to improve the performance of wireless communication systems. Different from conventional fixed antennas, the proposed RA system can flexibly alter the three-dimensional (3D) boresight direction of each antenna independently by adjusting its deflection angles to achieve a desired array directional gain pattern. Specifically, we investigate an RA-enabled uplink communication system, where the receive beamforming and the deflection angles of all RAs at the base station (BS) are jointly optimized to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the users. In the special single-user and free-space propagation setup, the optimal deflection angles of RAs are derived in closed form with the maximum-ratio combining (MRC) beamformer applied at the BS. Moreover, we analyze the asymptotic performance with an infinite number of antennas based on this solution, which theoretically proves that the RA system can achieve a higher array gain as compared to the fixed-antenna system. In the general multi-user and multi-path channel setup, we first propose an alternating optimization (AO) algorithm to alternately optimize the receive beamforming and the deflection angles of RAs in an iterative manner. Then, a two-stage algorithm that solves the formulated problem without the need for iteration is further proposed to reduce computational complexity. Simulation results are provided to validate our analytical results and demonstrate that the proposed RA system can significantly outperform other benchmark schemes.



Abstract:Six-dimensional movable antenna (6DMA) is a promising solution for enhancing wireless network capacity through the adjustment of both three-dimensional (3D) positions and 3D rotations of distributed antenna surfaces. Previous works mainly consider 6DMA surfaces composed of active antenna elements, thus termed as active 6DMA. In this letter, we propose a new passive 6DMA system consisting of distributed passive intelligent reflecting surfaces (IRSs) that can be adjusted in terms of 3D position and 3D rotation. Specifically, we study a passive 6DMA-aided multiuser uplink system and aim to maximize the users' achievable sum rate by jointly optimizing the 3D positions, 3D rotations, and reflection coefficients of all passive 6DMA surfaces, as well as the receive beamforming matrix at the base station (BS). To solve this challenging non-convex optimization problem, we propose an alternating optimization (AO) algorithm that decomposes it into three subproblems and solves them alternately in an iterative manner. Numerical results are presented to investigate the performance of the proposed passive 6DMA system under different configurations and demonstrate its superior performance over the traditional fixed-IRS counterpart for both directive and isotropic radiation patterns of passive reflecting elements.




Abstract:In this letter, we propose a six-dimensional movable antenna (6DMA)-aided cell-free massive multiple-input multiple-output (MIMO) system to fully exploit its macro spatial diversity, where a set of distributed access points (APs), each equipped with multiple 6DMA surfaces, cooperatively serve all users in a given area. Connected to a central processing unit (CPU) via fronthaul links, 6DMA-APs can optimize their combining vectors for decoding the users' information based on either local channel state information (CSI) or global CSI shared among them. We aim to maximize the average achievable sum-rate via jointly optimizing the rotation angles of all 6DMA surfaces at all APs, based on the users' spatial distribution. Since the formulated problem is non-convex and highly non-linear, we propose a Bayesian optimization-based algorithm to solve it efficiently. Simulation results show that, by enhancing signal power and mitigating interference through reduced channel cross-correlation among users, 6DMA-APs with optimized rotations can significantly improve the average sum-rate, as compared to the conventional cell-free network with fixed-position antennas and that with only a single centralized AP with optimally rotated 6DMAs, especially when the user distribution is more spatially diverse.




Abstract:Fluid antenna system (FAS)/movable antenna (MA) has emerged as a promising technology to fully exploit the spatial degrees of freedom (DoFs). In this paper, we propose a new rotatable antenna (RA) model, as a simplified implementation of six-dimensional movable antenna (6DMA), to improve the performance of wireless communication systems. Different from conventional fixed-position antenna (FPA), the proposed RA system can independently and flexibly change the three-dimensional (3D) orientation of each antenna by adjusting its declination angles to achieve desired channel realizations. Specifically, we study an RA-enabled uplink communication system, where the receive beamforming and the declination angles of all RAs are jointly optimized to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the users. In the special single-user and free-space propagation setup, the optimal declination angles are derived in closed form with the maximum-ratio combining (MRC) beamformer applied at the base station (BS). In the general multi-user and multi-path setup, we propose an alternating optimization (AO) algorithm to alternately optimize the receive beamforming and the declination angles in an iterative manner. Simulation results are provided to demonstrate that the proposed RA-enabled system can significantly outperform other benchmark schemes.