Abstract:Symbol-level precoding (SLP) based on the concept of constructive interference (CI) is shown to be superior to traditional block-level precoding (BLP), however at the cost of a symbol-by-symbol optimization during the precoding design. In this paper, we propose a CI-based block-level precoding (CI-BLP) scheme for the downlink transmission of a multi-user multiple-input single-output (MU-MISO) communication system, where we design a constant precoding matrix to a block of symbol slots to exploit CI for each symbol slot simultaneously. A single optimization problem is formulated to maximize the minimum CI effect over the entire block, thus reducing the computational cost of traditional SLP as the optimization problem only needs to be solved once per block. By leveraging the Karush-Kuhn-Tucker (KKT) conditions and the dual problem formulation, the original optimization problem is finally shown to be equivalent to a quadratic programming (QP) over a simplex. Numerical results validate our derivations and exhibit superior performance for the proposed CI-BLP scheme over traditional BLP and SLP methods, thanks to the relaxed block-level power constraint.
Abstract:Hierarchical multi-label academic text classification (HMTC) is to assign academic texts into a hierarchically structured labeling system. We propose an attention-based hierarchical multi-label classification algorithm of academic texts (AHMCA) by integrating features such as text, keywords, and hierarchical structure, the academic documents are classified into the most relevant categories. We utilize word2vec and BiLSTM to obtain embedding and latent vector representations of text, keywords, and hierarchies. We use hierarchical attention mechanism to capture the associations between keywords, label hierarchies, and text word vectors to generate hierarchical-specific document embedding vectors to replace the original text embeddings in HMCN-F. The experimental results on the academic text dataset demonstrate the effectiveness of the AHMCA algorithm.
Abstract:Aiming at the problem that the current general-purpose semantic text similarity calculation methods are difficult to use the semantic information of scientific academic conference data, a semantic similarity calculation algorithm for scientific academic conferences by fusion with domain features is proposed. First, the domain feature information of the conference is obtained through entity recognition and keyword extraction, and it is input into the BERT network as a feature and the conference information. The structure of the Siamese network is used to solve the anisotropy problem of BERT. The output of the network is pooled and normalized, and finally the cosine similarity is used to calculate the similarity between the two sessions. Experimental results show that the SBFD algorithm has achieved good results on different data sets, and the Spearman correlation coefficient has a certain improvement compared with the comparison algorithm.
Abstract:In the era of big data, it is possible to carry out cooperative research on the research results of researchers through papers, patents and other data, so as to study the role of researchers, and produce results in the analysis of results. For the important problems found in the research and application of reality, this paper also proposes a research scholar interest mining algorithm based on load centrality (LCBIM), which can accurately solve the problem according to the researcher's research papers and patent data. Graphs of creative algorithms in various fields of the study aggregated ideas, generated topic graphs by aggregating neighborhoods, used the generated topic information to construct with similar or similar topic spaces, and utilize keywords to construct one or more topics. The regional structure of each topic can be used to closely calculate the weight of the centrality research model of the node, which can analyze the field in the complete coverage principle. The scientific research cooperation based on the load rate center proposed in this paper can effectively extract the interests of scientific research scholars from papers and corpus.
Abstract:Cross-media retrieval of scientific and technological information is one of the important tasks in the cross-media study. Cross-media scientific and technological information retrieval obtain target information from massive multi-source and heterogeneous scientific and technological resources, which helps to design applications that meet users' needs, including scientific and technological information recommendation, personalized scientific and technological information retrieval, etc. The core of cross-media retrieval is to learn a common subspace, so that data from different media can be directly compared with each other after being mapped into this subspace. In subspace learning, existing methods often focus on modeling the discrimination of intra-media data and the invariance of inter-media data after mapping; however, they ignore the semantic consistency of inter-media data before and after mapping and media discrimination of intra-semantics data, which limit the result of cross-media retrieval. In light of this, we propose a scientific and technological information oriented Semantics-adversarial and Media-adversarial Cross-media Retrieval method (SMCR) to find an effective common subspace. Specifically, SMCR minimizes the loss of inter-media semantic consistency in addition to modeling intra-media semantic discrimination, to preserve semantic similarity before and after mapping. Furthermore, SMCR constructs a basic feature mapping network and a refined feature mapping network to jointly minimize the media discriminative loss within semantics, so as to enhance the feature mapping network's ability to confuse the media discriminant network. Experimental results on two datasets demonstrate that the proposed SMCR outperforms state-of-the-art methods in cross-media retrieval.
Abstract:Emotional recognition through exploring the electroencephalography (EEG) characteristics has been widely performed in recent studies. Nonlinear analysis and feature extraction methods for understanding the complex dynamical phenomena are associated with the EEG patterns of different emotions. The phase space reconstruction is a typical nonlinear technique to reveal the dynamics of the brain neural system. Recently, the topological data analysis (TDA) scheme has been used to explore the properties of space, which provides a powerful tool to think over the phase space. In this work, we proposed a topological EEG nonlinear dynamics analysis approach using the phase space reconstruction (PSR) technique to convert EEG time series into phase space, and the persistent homology tool explores the topological properties of the phase space. We perform the topological analysis of EEG signals in different rhythm bands to build emotion feature vectors, which shows high distinguishing ability. We evaluate the approach with two well-known benchmark datasets, the DEAP and DREAMER datasets. The recognition results achieved accuracies of 99.37% and 99.35% in arousal and valence classification tasks with DEAP, and 99.96%, 99.93%, and 99.95% in arousal, valence, and dominance classifications tasks with DREAMER, respectively. The performances are supposed to be outperformed current state-of-art approaches in DREAMER (improved by 1% to 10% depends on temporal length), while comparable to other related works evaluated in DEAP. The proposed work is the first investigation in the emotion recognition oriented EEG topological feature analysis, which brought a novel insight into the brain neural system nonlinear dynamics analysis and feature extraction.
Abstract:In this paper, we propose a constructive interference (CI)-based block-level precoding (CI-BLP) approach for the downlink of a multi-user multiple-input single-output (MU-MISO) communication system. Contrary to existing CI precoding approaches which have to be designed on a symbol-by-symbol level, here a constant precoding matrix is applied to a block of symbol slots within a channel coherence interval, thus significantly reducing the computational costs over traditional CI-based symbol-level precoding (CI-SLP) as the CI-BLP optimization problem only needs to be solved once per block. For both PSK and QAM modulation, we formulate an optimization problem to maximize the minimum CI effect over the block subject to a block- rather than symbol-level power budget. We mathematically derive the optimal precoding matrix for CI-BLP as a function of the Lagrange multipliers in closed form. By formulating the dual problem, the original CI-BLP optimization problem is further shown to be equivalent to a quadratic programming (QP) optimization. Numerical results validate our derivations, and show that the proposed CI-BLP scheme achieves improved performance over the traditional CI-SLP method, thanks to the relaxed power constraint over the considered block of symbol slots.
Abstract:Graph Convolutional Networks (GCNs) have drawn tremendous attention in the past three years. Compared with other deep learning modalities, high-performance hardware acceleration of GCNs is as critical but even more challenging. The hurdles arise from the poor data locality and redundant computation due to the large size, high sparsity, and irregular non-zero distribution of real-world graphs. In this paper we propose a novel hardware accelerator for GCN inference, called I-GCN, that significantly improves data locality and reduces unnecessary computation. The mechanism is a new online graph restructuring algorithm we refer to as islandization. The proposed algorithm finds clusters of nodes with strong internal but weak external connections. The islandization process yields two major benefits. First, by processing islands rather than individual nodes, there is better on-chip data reuse and fewer off-chip memory accesses. Second, there is less redundant computation as aggregation for common/shared neighbors in an island can be reused. The parallel search, identification, and leverage of graph islands are all handled purely in hardware at runtime working in an incremental pipeline. This is done without any preprocessing of the graph data or adjustment of the GCN model structure. Experimental results show that I-GCN can significantly reduce off-chip accesses and prune 38% of aggregation operations, leading to performance speedups over CPUs, GPUs, the prior art GCN accelerators of 5549x, 403x, and 5.7x on average, respectively.
Abstract:Depression is increasingly impacting individuals both physically and psychologically worldwide. It has become a global major public health problem and attracts attention from various research fields. Traditionally, the diagnosis of depression is formulated through semi-structured interviews and supplementary questionnaires, which makes the diagnosis heavily relying on physicians experience and is subject to bias. Mental health monitoring and cloud-based remote diagnosis can be implemented through an automated depression diagnosis system. In this article, we propose an attention-based multimodality speech and text representation for depression prediction. Our model is trained to estimate the depression severity of participants using the Distress Analysis Interview Corpus-Wizard of Oz (DAIC-WOZ) dataset. For the audio modality, we use the collaborative voice analysis repository (COVAREP) features provided by the dataset and employ a Bidirectional Long Short-Term Memory Network (Bi-LSTM) followed by a Time-distributed Convolutional Neural Network (T-CNN). For the text modality, we use global vectors for word representation (GloVe) to perform word embeddings and the embeddings are fed into the Bi-LSTM network. Results show that both audio and text models perform well on the depression severity estimation task, with best sequence level F1 score of 0.9870 and patient-level F1 score of 0.9074 for the audio model over five classes (healthy, mild, moderate, moderately severe, and severe), as well as sequence level F1 score of 0.9709 and patient-level F1 score of 0.9245 for the text model over five classes. Results are similar for the multimodality fused model, with the highest F1 score of 0.9580 on the patient-level depression detection task over five classes. Experiments show statistically significant improvements over previous works.
Abstract:Multi-functional and reconfigurable multiple-input multiple-output (MR-MIMO) can provide performance gains over traditional MIMO by introducing additional degrees of freedom. In this paper, we focus on the capacity maximization pattern design for MR-MIMO systems. Firstly, we introduce the matrix representation of MR-MIMO, based on which a pattern design problem is formulated. To further reveal the effect of the radiation pattern on the wireless channel, we consider pattern design for both the single-pattern case where the optimized radiation pattern is the same for all the antenna elements, and the multi-pattern case where different antenna elements can adopt different radiation patterns. For the single-pattern case, we show that the pattern design is equivalent to a redistribution of power among all scattering paths, and an eigenvalue optimization based solution is obtained. For the multi-pattern case, we propose a sequential optimization framework with manifold optimization and eigenvalue decomposition to obtain near-optimal solutions. Numerical results validate the superiority of MR-MIMO systems over traditional MIMO in terms of capacity, and also show the effectiveness of the proposed solutions.