Abstract:In recent years, with the continuous progress of science and technology, the number of scientific research achievements is increasing day by day, as the exchange platform and medium of scientific research achievements, the scientific and technological academic conferences have become more and more abundant. The convening of scientific and technological academic conferences will bring large number of academic papers, researchers, research institutions and other data, and the massive data brings difficulties for researchers to obtain valuable information. Therefore, it is of great significance to use deep learning technology to mine the core information in the data of scientific and technological academic conferences, and to realize a knowledge graph and accurate portrait system of scientific and technological academic conferences, so that researchers can obtain scientific research information faster.
Abstract:Aiming at the problem that the current general-purpose semantic text similarity calculation methods are difficult to use the semantic information of scientific academic conference data, a semantic similarity calculation algorithm for scientific academic conferences by fusion with domain features is proposed. First, the domain feature information of the conference is obtained through entity recognition and keyword extraction, and it is input into the BERT network as a feature and the conference information. The structure of the Siamese network is used to solve the anisotropy problem of BERT. The output of the network is pooled and normalized, and finally the cosine similarity is used to calculate the similarity between the two sessions. Experimental results show that the SBFD algorithm has achieved good results on different data sets, and the Spearman correlation coefficient has a certain improvement compared with the comparison algorithm.