Stormfront.org), and the guidelines are applied to a subset of the collected posts. Through crowdsourcing, we annotate a total of a thousand posts that are labeled as neo-fascist or non-neo-fascist. With this labeled data set, we fine-tune and test both Small Language Models (SLMs) and Large Language Models (LLMs), obtaining the very first classification models for neo-fascist discourse. We find that the prevalence of neo-fascist rhetoric in this kind of forum is ever-present, making them a good target for future research. The societal context is a key consideration for neo-fascist speech when conducting NLP research. Finally, the work against this kind of political movement must be pressed upon and continued for the well-being of a democratic society. Disclaimer: This study focuses on detecting neo-fascist content in text, similar to other hate speech analyses, without labeling individuals or organizations.
https://github.com/xiaomi-research/dasheng-glap.