Abstract:Neo-fascism is a political and societal ideology that has been having remarkable growth in the last decade in the United States of America (USA), as well as in other Western societies. It poses a grave danger to democracy and the minorities it targets, and it requires active actions against it to avoid escalation. This work presents the first-of-its-kind neo-fascist coding scheme for digital discourse in the USA societal context, overseen by political science researchers. Our work bridges the gap between Natural Language Processing (NLP) and political science against this phenomena. Furthermore, to test the coding scheme, we collect a tremendous amount of activity on the internet from notable neo-fascist groups (the forums of Iron March and Stormfront.org), and the guidelines are applied to a subset of the collected posts. Through crowdsourcing, we annotate a total of a thousand posts that are labeled as neo-fascist or non-neo-fascist. With this labeled data set, we fine-tune and test both Small Language Models (SLMs) and Large Language Models (LLMs), obtaining the very first classification models for neo-fascist discourse. We find that the prevalence of neo-fascist rhetoric in this kind of forum is ever-present, making them a good target for future research. The societal context is a key consideration for neo-fascist speech when conducting NLP research. Finally, the work against this kind of political movement must be pressed upon and continued for the well-being of a democratic society. Disclaimer: This study focuses on detecting neo-fascist content in text, similar to other hate speech analyses, without labeling individuals or organizations.
Abstract:Online polarization poses a growing challenge for democratic discourse, yet most computational social science research remains monolingual, culturally narrow, or event-specific. We introduce POLAR, a multilingual, multicultural, and multievent dataset with over 23k instances in seven languages from diverse online platforms and real-world events. Polarization is annotated along three axes: presence, type, and manifestation, using a variety of annotation platforms adapted to each cultural context. We conduct two main experiments: (1) we fine-tune six multilingual pretrained language models in both monolingual and cross-lingual setups; and (2) we evaluate a range of open and closed large language models (LLMs) in few-shot and zero-shot scenarios. Results show that while most models perform well on binary polarization detection, they achieve substantially lower scores when predicting polarization types and manifestations. These findings highlight the complex, highly contextual nature of polarization and the need for robust, adaptable approaches in NLP and computational social science. All resources will be released to support further research and effective mitigation of digital polarization globally.