Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"speech recognition": models, code, and papers

Bengali Common Voice Speech Dataset for Automatic Speech Recognition

Jun 29, 2022
Samiul Alam, Asif Sushmit, Zaowad Abdullah, Shahrin Nakkhatra, MD. Nazmuddoha Ansary, Syed Mobassir Hossen, Sazia Morshed Mehnaz, Tahsin Reasat, Ahmed Imtiaz Humayun

Bengali is one of the most spoken languages in the world with over 300 million speakers globally. Despite its popularity, research into the development of Bengali speech recognition systems is hindered due to the lack of diverse open-source datasets. As a way forward, we have crowdsourced the Bengali Common Voice Speech Dataset, which is a sentence-level automatic speech recognition corpus. Collected on the Mozilla Common Voice platform, the dataset is part of an ongoing campaign that has led to the collection of over 400 hours of data in 2 months and is growing rapidly. Our analysis shows that this dataset has more speaker, phoneme, and environmental diversity compared to the OpenSLR Bengali ASR dataset, the largest existing open-source Bengali speech dataset. We present insights obtained from the dataset and discuss key linguistic challenges that need to be addressed in future versions. Additionally, we report the current performance of a few Automatic Speech Recognition (ASR) algorithms and set a benchmark for future research.

Access Paper or Ask Questions

Jira: a Kurdish Speech Recognition System Designing and Building Speech Corpus and Pronunciation Lexicon

Feb 15, 2021
Hadi Veisi, Hawre Hosseini, Mohammad Mohammadamini, Wirya Fathy, Aso Mahmudi

In this paper, we introduce the first large vocabulary speech recognition system (LVSR) for the Central Kurdish language, named Jira. The Kurdish language is an Indo-European language spoken by more than 30 million people in several countries, but due to the lack of speech and text resources, there is no speech recognition system for this language. To fill this gap, we introduce the first speech corpus and pronunciation lexicon for the Kurdish language. Regarding speech corpus, we designed a sentence collection in which the ratio of di-phones in the collection resembles the real data of the Central Kurdish language. The designed sentences are uttered by 576 speakers in a controlled environment with noise-free microphones (called AsoSoft Speech-Office) and in Telegram social network environment using mobile phones (denoted as AsoSoft Speech-Crowdsourcing), resulted in 43.68 hours of speech. Besides, a test set including 11 different document topics is designed and recorded in two corresponding speech conditions (i.e., Office and Crowdsourcing). Furthermore, a 60K pronunciation lexicon is prepared in this research in which we faced several challenges and proposed solutions for them. The Kurdish language has several dialects and sub-dialects that results in many lexical variations. Our methods for script standardization of lexical variations and automatic pronunciation of the lexicon tokens are presented in detail. To setup the recognition engine, we used the Kaldi toolkit. A statistical tri-gram language model that is extracted from the AsoSoft text corpus is used in the system. Several standard recipes including HMM-based models (i.e., mono, tri1, tr2, tri2, tri3), SGMM, and DNN methods are used to generate the acoustic model. These methods are trained with AsoSoft Speech-Office and AsoSoft Speech-Crowdsourcing and a combination of them. The best performance achieved by the SGMM acoustic model which results in 13.9% of the average word error rate (on different document topics) and 4.9% for the general topic.

Access Paper or Ask Questions

Single-Channel Multi-talker Speech Recognition with Permutation Invariant Training

Jul 19, 2017
Yanmin Qian, Xuankai Chang, Dong Yu

Although great progresses have been made in automatic speech recognition (ASR), significant performance degradation is still observed when recognizing multi-talker mixed speech. In this paper, we propose and evaluate several architectures to address this problem under the assumption that only a single channel of mixed signal is available. Our technique extends permutation invariant training (PIT) by introducing the front-end feature separation module with the minimum mean square error (MSE) criterion and the back-end recognition module with the minimum cross entropy (CE) criterion. More specifically, during training we compute the average MSE or CE over the whole utterance for each possible utterance-level output-target assignment, pick the one with the minimum MSE or CE, and optimize for that assignment. This strategy elegantly solves the label permutation problem observed in the deep learning based multi-talker mixed speech separation and recognition systems. The proposed architectures are evaluated and compared on an artificially mixed AMI dataset with both two- and three-talker mixed speech. The experimental results indicate that our proposed architectures can cut the word error rate (WER) by 45.0% and 25.0% relatively against the state-of-the-art single-talker speech recognition system across all speakers when their energies are comparable, for two- and three-talker mixed speech, respectively. To our knowledge, this is the first work on the multi-talker mixed speech recognition on the challenging speaker-independent spontaneous large vocabulary continuous speech task.

* 11 pages, 6 figures, Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing. arXiv admin note: text overlap with arXiv:1704.01985 
Access Paper or Ask Questions

Learning Spontaneity to Improve Emotion Recognition In Speech

Jun 13, 2018
Karttikeya Mangalam, Tanaya Guha

We investigate the effect and usefulness of spontaneity (i.e. whether a given speech is spontaneous or not) in speech in the context of emotion recognition. We hypothesize that emotional content in speech is interrelated with its spontaneity, and use spontaneity classification as an auxiliary task to the problem of emotion recognition. We propose two supervised learning settings that utilize spontaneity to improve speech emotion recognition: a hierarchical model that performs spontaneity detection before performing emotion recognition, and a multitask learning model that jointly learns to recognize both spontaneity and emotion. Through various experiments on the well known IEMOCAP database, we show that by using spontaneity detection as an additional task, significant improvement can be achieved over emotion recognition systems that are unaware of spontaneity. We achieve state-of-the-art emotion recognition accuracy (4-class, 69.1%) on the IEMOCAP database outperforming several relevant and competitive baselines.

* Accepted at Interspeech 2018 
Access Paper or Ask Questions

Bridging the Gap Between Monaural Speech Enhancement and Recognition with Distortion-Independent Acoustic Modeling

Mar 13, 2019
Peidong Wang, Ke Tan, DeLiang Wang

Monaural speech enhancement has made dramatic advances since the introduction of deep learning a few years ago. Although enhanced speech has been demonstrated to have better intelligibility and quality for human listeners, feeding it directly to automatic speech recognition (ASR) systems trained with noisy speech has not produced expected improvements in ASR performance. The lack of an enhancement benefit on recognition, or the gap between monaural speech enhancement and recognition, is often attributed to speech distortions introduced in the enhancement process. In this study, we analyze the distortion problem, compare different acoustic models, and investigate a distortion-independent training scheme for monaural speech recognition. Experimental results suggest that distortion-independent acoustic modeling is able to overcome the distortion problem. Such an acoustic model can also work with speech enhancement models different from the one used during training. Moreover, the models investigated in this paper outperform the previous best system on the CHiME-2 corpus.

Access Paper or Ask Questions

Combining Multiple Views for Visual Speech Recognition

Jun 28, 2018
Marina Zimmermann, Mostafa Mehdipour Ghazi, Hazım Kemal Ekenel, Jean-Philippe Thiran

Visual speech recognition is a challenging research problem with a particular practical application of aiding audio speech recognition in noisy scenarios. Multiple camera setups can be beneficial for the visual speech recognition systems in terms of improved performance and robustness. In this paper, we explore this aspect and provide a comprehensive study on combining multiple views for visual speech recognition. The thorough analysis covers fusion of all possible view angle combinations both at feature level and decision level. The employed visual speech recognition system in this study extracts features through a PCA-based convolutional neural network, followed by an LSTM network. Finally, these features are processed in a tandem system, being fed into a GMM-HMM scheme. The decision fusion acts after this point by combining the Viterbi path log-likelihoods. The results show that the complementary information contained in recordings from different view angles improves the results significantly. For example, the sentence correctness on the test set is increased from 76% for the highest performing single view ($30^\circ$) to up to 83% when combining this view with the frontal and $60^\circ$ view angles.

* Proceedings of the 14th International Conference on Auditory-Visual Speech Processing (AVSP2017) 
Access Paper or Ask Questions

TALCS: An Open-Source Mandarin-English Code-Switching Corpus and a Speech Recognition Baseline

Jun 27, 2022
Chengfei Li, Shuhao Deng, Yaoping Wang, Guangjing Wang, Yaguang Gong, Changbin Chen, Jinfeng Bai

This paper introduces a new corpus of Mandarin-English code-switching speech recognition--TALCS corpus, suitable for training and evaluating code-switching speech recognition systems. TALCS corpus is derived from real online one-to-one English teaching scenes in TAL education group, which contains roughly 587 hours of speech sampled at 16 kHz. To our best knowledge, TALCS corpus is the largest well labeled Mandarin-English code-switching open source automatic speech recognition (ASR) dataset in the world. In this paper, we will introduce the recording procedure in detail, including audio capturing devices and corpus environments. And the TALCS corpus is freely available for download under the permissive license1. Using TALCS corpus, we conduct ASR experiments in two popular speech recognition toolkits to make a baseline system, including ESPnet and Wenet. The Mixture Error Rate (MER) performance in the two speech recognition toolkits is compared in TALCS corpus. The experimental results implies that the quality of audio recordings and transcriptions are promising and the baseline system is workable.

* accepted by INTERSPEECH 2022 
Access Paper or Ask Questions

Joint Speaker Counting, Speech Recognition, and Speaker Identification for Overlapped Speech of Any Number of Speakers

Jun 19, 2020
Naoyuki Kanda, Yashesh Gaur, Xiaofei Wang, Zhong Meng, Zhuo Chen, Tianyan Zhou, Takuya Yoshioka

In this paper, we propose a joint model for simultaneous speaker counting, speech recognition, and speaker identification on monaural overlapped speech. Our model is built on serialized output training (SOT) with attention-based encoder-decoder, a recently proposed method for recognizing overlapped speech comprising an arbitrary number of speakers. We extend the SOT model by introducing a speaker inventory as an auxiliary input to produce speaker labels as well as multi-speaker transcriptions. All model parameters are optimized by speaker-attributed maximum mutual information criterion, which represents a joint probability for overlapped speech recognition and speaker identification. Experiments on LibriSpeech corpus show that our proposed method achieves significantly better speaker-attributed word error rate than the baseline that separately performs overlapped speech recognition and speaker identification.

* Submitted to INTERSPEECH 2020 
Access Paper or Ask Questions

Discriminative Multi-modality Speech Recognition

May 13, 2020
Bo Xu, Cheng Lu, Yandong Guo, Jacob Wang

Vision is often used as a complementary modality for audio speech recognition (ASR), especially in the noisy environment where performance of solo audio modality significantly deteriorates. After combining visual modality, ASR is upgraded to the multi-modality speech recognition (MSR). In this paper, we propose a two-stage speech recognition model. In the first stage, the target voice is separated from background noises with help from the corresponding visual information of lip movements, making the model 'listen' clearly. At the second stage, the audio modality combines visual modality again to better understand the speech by a MSR sub-network, further improving the recognition rate. There are some other key contributions: we introduce a pseudo-3D residual convolution (P3D)-based visual front-end to extract more discriminative features; we upgrade the temporal convolution block from 1D ResNet with the temporal convolutional network (TCN), which is more suitable for the temporal tasks; the MSR sub-network is built on the top of Element-wise-Attention Gated Recurrent Unit (EleAtt-GRU), which is more effective than Transformer in long sequences. We conducted extensive experiments on the LRS3-TED and the LRW datasets. Our two-stage model (audio enhanced multi-modality speech recognition, AE-MSR) consistently achieves the state-of-the-art performance by a significant margin, which demonstrates the necessity and effectiveness of AE-MSR.

* CVPR2020 
Access Paper or Ask Questions

Emotion Recognition in Speech using Cross-Modal Transfer in the Wild

Aug 16, 2018
Samuel Albanie, Arsha Nagrani, Andrea Vedaldi, Andrew Zisserman

Obtaining large, human labelled speech datasets to train models for emotion recognition is a notoriously challenging task, hindered by annotation cost and label ambiguity. In this work, we consider the task of learning embeddings for speech classification without access to any form of labelled audio. We base our approach on a simple hypothesis: that the emotional content of speech correlates with the facial expression of the speaker. By exploiting this relationship, we show that annotations of expression can be transferred from the visual domain (faces) to the speech domain (voices) through cross-modal distillation. We make the following contributions: (i) we develop a strong teacher network for facial emotion recognition that achieves the state of the art on a standard benchmark; (ii) we use the teacher to train a student, tabula rasa, to learn representations (embeddings) for speech emotion recognition without access to labelled audio data; and (iii) we show that the speech emotion embedding can be used for speech emotion recognition on external benchmark datasets. Code, models and data are available.

* Conference paper at ACM Multimedia 2018 
Access Paper or Ask Questions