What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
Jun 09, 2025
Abstract:We present DeRAGEC, a method for improving Named Entity (NE) correction in Automatic Speech Recognition (ASR) systems. By extending the Retrieval-Augmented Generative Error Correction (RAGEC) framework, DeRAGEC employs synthetic denoising rationales to filter out noisy NE candidates before correction. By leveraging phonetic similarity and augmented definitions, it refines noisy retrieved NEs using in-context learning, requiring no additional training. Experimental results on CommonVoice and STOP datasets show significant improvements in Word Error Rate (WER) and NE hit ratio, outperforming baseline ASR and RAGEC methods. Specifically, we achieved a 28% relative reduction in WER compared to ASR without postprocessing. Our source code is publicly available at: https://github.com/solee0022/deragec
* ACL2025 Findings
Via

Jun 09, 2025
Abstract:In this paper, we propose a method for annotating phonemic and prosodic labels on a given audio-transcript pair, aimed at constructing Japanese text-to-speech (TTS) datasets. Our approach involves fine-tuning a large-scale pre-trained automatic speech recognition (ASR) model, conditioned on ground truth transcripts, to simultaneously output phrase-level graphemes and annotation labels. To further correct errors in phonemic labeling, we employ a decoding strategy that utilizes dictionary prior knowledge. The objective evaluation results demonstrate that our proposed method outperforms previous approaches relying solely on text or audio. The subjective evaluation results indicate that the naturalness of speech synthesized by the TTS model, trained with labels annotated using our method, is comparable to that of a model trained with manual annotations.
* Accepted to INTERSPEECH 2025
Via

Jun 06, 2025
Abstract:One challenge of integrating speech input with large language models (LLMs) stems from the discrepancy between the continuous nature of audio data and the discrete token-based paradigm of LLMs. To mitigate this gap, we propose a method for integrating vector quantization (VQ) into LLM-based automatic speech recognition (ASR). Using the LLM embedding table as the VQ codebook, the VQ module aligns the continuous representations from the audio encoder with the discrete LLM inputs, enabling the LLM to operate on a discretized audio representation that better reflects the linguistic structure. We further create a soft "discretization" of the audio representation by updating the codebook and performing a weighted sum over the codebook embeddings. Empirical results demonstrate that our proposed method significantly improves upon the LLM-based ASR baseline, particularly in out-of-domain conditions. This work highlights the potential of soft discretization as a modality bridge in LLM-based ASR.
Via

Jun 05, 2025
Abstract:Audio-Visual Speech Recognition (AVSR) has gained significant attention recently due to its robustness against noise, which often challenges conventional speech recognition systems that rely solely on audio features. Despite this advantage, AVSR models remain limited by the scarcity of extensive datasets, especially for most languages beyond English. Automated data collection offers a promising solution. This work presents a practical approach to generate AVSR datasets from raw video, refining existing techniques for improved efficiency and accessibility. We demonstrate its broad applicability by developing a baseline AVSR model for Vietnamese. Experiments show the automatically collected dataset enables a strong baseline, achieving competitive performance with robust ASR in clean conditions and significantly outperforming them in noisy environments like cocktail parties. This efficient method provides a pathway to expand AVSR to more languages, particularly under-resourced ones.
* Accepted at Interspeech 2025
Via

Jun 06, 2025
Abstract:Multi-speaker automatic speech recognition (MS-ASR) faces significant challenges in transcribing overlapped speech, a task critical for applications like meeting transcription and conversational analysis. While serialized output training (SOT)-style methods serve as common solutions, they often discard absolute timing information, limiting their utility in time-sensitive scenarios. Leveraging recent advances in large language models (LLMs) for conversational audio processing, we propose a novel diarization-aware multi-speaker ASR system that integrates speaker diarization with LLM-based transcription. Our framework processes structured diarization inputs alongside frame-level speaker and semantic embeddings, enabling the LLM to generate segment-level transcriptions. Experiments demonstrate that the system achieves robust performance in multilingual dyadic conversations and excels in complex, high-overlap multi-speaker meeting scenarios. This work highlights the potential of LLMs as unified back-ends for joint speaker-aware segmentation and transcription.
* Submitted to ASRU2025
Via

Jun 09, 2025
Abstract:Memory and long-range temporal processing are core requirements for sequence modeling tasks across natural language processing, time-series forecasting, speech recognition, and control. While nonlinear recurrence has long been viewed as essential for enabling such mechanisms, recent work suggests that linear dynamics may often suffice. In this study, we go beyond performance comparisons to systematically dissect the functional role of nonlinearity in recurrent networks--identifying both when it is computationally necessary, and what mechanisms it enables. We use Almost Linear Recurrent Neural Networks (AL-RNNs), which allow fine-grained control over nonlinearity, as both a flexible modeling tool and a probe into the internal mechanisms of memory. Across a range of classic sequence modeling tasks and a real-world stimulus selection task, we find that minimal nonlinearity is not only sufficient but often optimal, yielding models that are simpler, more robust, and more interpretable than their fully nonlinear or linear counterparts. Our results provide a principled framework for selectively introducing nonlinearity, bridging dynamical systems theory with the functional demands of long-range memory and structured computation in recurrent neural networks, with implications for both artificial and biological neural systems.
* Preprint under review
Via

Jun 05, 2025
Abstract:In automatic speech recognition (ASR), phoneme-based multilingual pre-training and crosslingual fine-tuning is attractive for its high data efficiency and competitive results compared to subword-based models. However, Weighted Finite State Transducer (WFST) based decoding is limited by its complex pipeline and inability to leverage large language models (LLMs). Therefore, we propose LLM-based phoneme-to-grapheme (LLM-P2G) decoding for phoneme-based ASR, consisting of speech-to-phoneme (S2P) and phoneme-to-grapheme (P2G). A challenge is that there seems to have information loss in cascading S2P and P2G. To address this challenge, we propose two training strategies: data augmentation with noisy phonemes (DANP), and randomized top-$K$ marginalized (TKM) training and decoding. Our experimental results show that LLM-P2G outperforms WFST-based systems in crosslingual ASR for Polish and German, by relative WER reductions of 3.6% and 6.9% respectively.
* Interspeech 2025
Via

Jun 17, 2025
Abstract:Speech enhancement, particularly denoising, is vital in improving the intelligibility and quality of speech signals for real-world applications, especially in noisy environments. While prior research has introduced various deep learning models for this purpose, many struggle to balance noise suppression, perceptual quality, and speaker-specific feature preservation, leaving a critical research gap in their comparative performance evaluation. This study benchmarks three state-of-the-art models Wave-U-Net, CMGAN, and U-Net, on diverse datasets such as SpEAR, VPQAD, and Clarkson datasets. These models were chosen due to their relevance in the literature and code accessibility. The evaluation reveals that U-Net achieves high noise suppression with SNR improvements of +71.96% on SpEAR, +64.83% on VPQAD, and +364.2% on the Clarkson dataset. CMGAN outperforms in perceptual quality, attaining the highest PESQ scores of 4.04 on SpEAR and 1.46 on VPQAD, making it well-suited for applications prioritizing natural and intelligible speech. Wave-U-Net balances these attributes with improvements in speaker-specific feature retention, evidenced by VeriSpeak score gains of +10.84% on SpEAR and +27.38% on VPQAD. This research indicates how advanced methods can optimize trade-offs between noise suppression, perceptual quality, and speaker recognition. The findings may contribute to advancing voice biometrics, forensic audio analysis, telecommunication, and speaker verification in challenging acoustic conditions.
Via

Jun 05, 2025
Abstract:Speech emotion recognition (SER) systems often exhibit gender bias. However, the effectiveness and robustness of existing debiasing methods in such multi-label scenarios remain underexplored. To address this gap, we present EMO-Debias, a large-scale comparison of 13 debiasing methods applied to multi-label SER. Our study encompasses techniques from pre-processing, regularization, adversarial learning, biased learners, and distributionally robust optimization. Experiments conducted on acted and naturalistic emotion datasets, using WavLM and XLSR representations, evaluate each method under conditions of gender imbalance. Our analysis quantifies the trade-offs between fairness and accuracy, identifying which approaches consistently reduce gender performance gaps without compromising overall model performance. The findings provide actionable insights for selecting effective debiasing strategies and highlight the impact of dataset distributions.
* 8 pages
Via

Jun 06, 2025
Abstract:Bias in speech emotion recognition (SER) systems often stems from spurious correlations between speaker characteristics and emotional labels, leading to unfair predictions across demographic groups. Many existing debiasing methods require model-specific changes or demographic annotations, limiting their practical use. We present CO-VADA, a Confidence-Oriented Voice Augmentation Debiasing Approach that mitigates bias without modifying model architecture or relying on demographic information. CO-VADA identifies training samples that reflect bias patterns present in the training data and then applies voice conversion to alter irrelevant attributes and generate samples. These augmented samples introduce speaker variations that differ from dominant patterns in the data, guiding the model to focus more on emotion-relevant features. Our framework is compatible with various SER models and voice conversion tools, making it a scalable and practical solution for improving fairness in SER systems.
* 8 pages
Via
