Abstract:Robust ASR under domain shift is crucial because real-world systems encounter unseen accents and domains with limited labeled data. Although pseudo-labeling offers a practical workaround, it often introduces systematic, accent-specific errors that filtering fails to fix. We ask: How can we correct these recurring biases without target ground truth? We propose a simple parameter-space correction: in a source domain containing both real and pseudo-labeled data, two ASR models are fine-tuned from the same initialization, one on ground-truth labels and the other on pseudo-labels, and their weight difference forms a correction vector that captures pseudo-label biases. When applied to a pseudo-labeled target model, this vector enhances recognition, achieving up to a 35% relative Word Error Rate (WER) reduction on AfriSpeech-200 across ten African accents with the Whisper tiny model.
Abstract:Speech emotion recognition (SER) systems often exhibit gender bias. However, the effectiveness and robustness of existing debiasing methods in such multi-label scenarios remain underexplored. To address this gap, we present EMO-Debias, a large-scale comparison of 13 debiasing methods applied to multi-label SER. Our study encompasses techniques from pre-processing, regularization, adversarial learning, biased learners, and distributionally robust optimization. Experiments conducted on acted and naturalistic emotion datasets, using WavLM and XLSR representations, evaluate each method under conditions of gender imbalance. Our analysis quantifies the trade-offs between fairness and accuracy, identifying which approaches consistently reduce gender performance gaps without compromising overall model performance. The findings provide actionable insights for selecting effective debiasing strategies and highlight the impact of dataset distributions.