Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo style transfer": models, code, and papers

Domain-Aware Universal Style Transfer

Aug 17, 2021
Kibeom Hong, Seogkyu Jeon, Huan Yang, Jianlong Fu, Hyeran Byun

Style transfer aims to reproduce content images with the styles from reference images. Existing universal style transfer methods successfully deliver arbitrary styles to original images either in an artistic or a photo-realistic way. However, the range of 'arbitrary style' defined by existing works is bounded in the particular domain due to their structural limitation. Specifically, the degrees of content preservation and stylization are established according to a predefined target domain. As a result, both photo-realistic and artistic models have difficulty in performing the desired style transfer for the other domain. To overcome this limitation, we propose a unified architecture, Domain-aware Style Transfer Networks (DSTN) that transfer not only the style but also the property of domain (i.e., domainness) from a given reference image. To this end, we design a novel domainness indicator that captures the domainness value from the texture and structural features of reference images. Moreover, we introduce a unified framework with domain-aware skip connection to adaptively transfer the stroke and palette to the input contents guided by the domainness indicator. Our extensive experiments validate that our model produces better qualitative results and outperforms previous methods in terms of proxy metrics on both artistic and photo-realistic stylizations.

* Accepted by ICCV 2021. Code is available at https://github.com/Kibeom-Hong/Domain-Aware-Style-Transfer 
  
Access Paper or Ask Questions

Deep Preset: Blending and Retouching Photos with Color Style Transfer

Jul 21, 2020
Man M. Ho, Jinjia Zhou

End-users, without knowledge in photography, desire to beautify their photos to have a similar color style as a well-retouched reference. However, recent works in image style transfer are overused. They usually synthesize undesirable results due to transferring exact colors to the wrong destination. It becomes even worse in sensitive cases such as portraits. In this work, we concentrate on learning low-level image transformation, especially color-shifting methods, rather than mixing contextual features, then present a novel scheme to train color style transfer with ground-truth. Furthermore, we propose a color style transfer named Deep Preset. It is designed to 1) generalize the features representing the color transformation from content with natural colors to retouched reference, then blend it into the contextual features of content, 2) predict hyper-parameters (settings or preset) of the applied low-level color transformation methods, 3) stylize content to have a similar color style as reference. We script Lightroom, a powerful tool in editing photos, to generate 600,000 training samples using 1,200 images from the Flick2K dataset and 500 user-generated presets with 69 settings. Experimental results show that our Deep Preset outperforms the previous works in color style transfer quantitatively and qualitatively.

* Our work is available at https://minhmanho.github.io/deep_preset 
  
Access Paper or Ask Questions

GPU-Accelerated Mobile Multi-view Style Transfer

Mar 02, 2020
Puneet Kohli, Saravana Gunaseelan, Jason Orozco, Yiwen Hua, Edward Li, Nicolas Dahlquist

An estimated 60% of smartphones sold in 2018 were equipped with multiple rear cameras, enabling a wide variety of 3D-enabled applications such as 3D Photos. The success of 3D Photo platforms (Facebook 3D Photo, Holopix, etc) depend on a steady influx of user generated content. These platforms must provide simple image manipulation tools to facilitate content creation, akin to traditional photo platforms. Artistic neural style transfer, propelled by recent advancements in GPU technology, is one such tool for enhancing traditional photos. However, naively extrapolating single-view neural style transfer to the multi-view scenario produces visually inconsistent results and is prohibitively slow on mobile devices. We present a GPU-accelerated multi-view style transfer pipeline which enforces style consistency between views with on-demand performance on mobile platforms. Our pipeline is modular and creates high quality depth and parallax effects from a stereoscopic image pair.

* 6 pages, 5 figures 
  
Access Paper or Ask Questions

Photo style transfer with consistency losses

May 09, 2020
Xu Yao, Gilles Puy, Patrick Pérez

We address the problem of style transfer between two photos and propose a new way to preserve photorealism. Using the single pair of photos available as input, we train a pair of deep convolution networks (convnets), each of which transfers the style of one photo to the other. To enforce photorealism, we introduce a content preserving mechanism by combining a cycle-consistency loss with a self-consistency loss. Experimental results show that this method does not suffer from typical artifacts observed in methods working in the same settings. We then further analyze some properties of these trained convnets. First, we notice that they can be used to stylize other unseen images with same known style. Second, we show that retraining only a small subset of the network parameters can be sufficient to adapt these convnets to new styles.

* In 2019 IEEE International Conference on Image Processing (ICIP) (pp. 2314-2318). IEEE 
  
Access Paper or Ask Questions

GLStyleNet: Higher Quality Style Transfer Combining Global and Local Pyramid Features

Nov 18, 2018
Zhizhong Wang, Lei Zhao, Wei Xing, Dongming Lu

Recent studies using deep neural networks have shown remarkable success in style transfer especially for artistic and photo-realistic images. However, the approaches using global feature correlations fail to capture small, intricate textures and maintain correct texture scales of the artworks, and the approaches based on local patches are defective on global effect. In this paper, we present a novel feature pyramid fusion neural network, dubbed GLStyleNet, which sufficiently takes into consideration multi-scale and multi-level pyramid features by best aggregating layers across a VGG network, and performs style transfer hierarchically with multiple losses of different scales. Our proposed method retains high-frequency pixel information and low frequency construct information of images from two aspects: loss function constraint and feature fusion. Our approach is not only flexible to adjust the trade-off between content and style, but also controllable between global and local. Compared to state-of-the-art methods, our method can transfer not just large-scale, obvious style cues but also subtle, exquisite ones, and dramatically improves the quality of style transfer. We demonstrate the effectiveness of our approach on portrait style transfer, artistic style transfer, photo-realistic style transfer and Chinese ancient painting style transfer tasks. Experimental results indicate that our unified approach improves image style transfer quality over previous state-of-the-art methods, while also accelerating the whole process in a certain extent. Our code is available at https://github.com/EndyWon/GLStyleNet.

  
Access Paper or Ask Questions

Photo Stylistic Brush: Robust Style Transfer via Superpixel-Based Bipartite Graph

Jul 15, 2016
Jiaying Liu, Wenhan Yang, Xiaoyan Sun, Wenjun Zeng

With the rapid development of social network and multimedia technology, customized image and video stylization has been widely used for various social-media applications. In this paper, we explore the problem of exemplar-based photo style transfer, which provides a flexible and convenient way to invoke fantastic visual impression. Rather than investigating some fixed artistic patterns to represent certain styles as was done in some previous works, our work emphasizes styles related to a series of visual effects in the photograph, e.g. color, tone, and contrast. We propose a photo stylistic brush, an automatic robust style transfer approach based on Superpixel-based BIpartite Graph (SuperBIG). A two-step bipartite graph algorithm with different granularity levels is employed to aggregate pixels into superpixels and find their correspondences. In the first step, with the extracted hierarchical features, a bipartite graph is constructed to describe the content similarity for pixel partition to produce superpixels. In the second step, superpixels in the input/reference image are rematched to form a new superpixel-based bipartite graph, and superpixel-level correspondences are generated by a bipartite matching. Finally, the refined correspondence guides SuperBIG to perform the transformation in a decorrelated color space. Extensive experimental results demonstrate the effectiveness and robustness of the proposed method for transferring various styles of exemplar images, even for some challenging cases, such as night images.

  
Access Paper or Ask Questions

One-Shot Mutual Affine-Transfer for Photorealistic Stylization

Jul 24, 2019
Ying Qu, Zhenzhou Shao, Hairong Qi

Photorealistic style transfer aims to transfer the style of a reference photo onto a content photo naturally, such that the stylized image looks like a real photo taken by a camera. Existing state-of-the-art methods are prone to spatial structure distortion of the content image and global color inconsistency across different semantic objects, making the results less photorealistic. In this paper, we propose a one-shot mutual Dirichlet network, to address these challenging issues. The essential contribution of the work is the realization of a representation scheme that successfully decouples the spatial structure and color information of images, such that the spatial structure can be well preserved during stylization. This representation is discriminative and context-sensitive with respect to semantic objects. It is extracted with a shared sparse Dirichlet encoder. Moreover, such representation is encouraged to be matched between the content and style images for faithful color transfer. The affine-transfer model is embedded in the decoder of the network to facilitate the color transfer. The strong representative and discriminative power of the proposed network enables one-shot learning given only one content-style image pair. Experimental results demonstrate that the proposed method is able to generate photorealistic photos without spatial distortion or abrupt color changes.

  
Access Paper or Ask Questions

Ultrafast Photorealistic Style Transfer via Neural Architecture Search

Dec 05, 2019
Jie An, Haoyi Xiong, Jun Huan, Jiebo Luo

The key challenge in photorealistic style transfer is that an algorithm should faithfully transfer the style of a reference photo to a content photo while the generated image should look like one captured by a camera. Although several photorealistic style transfer algorithms have been proposed, they need to rely on post- and/or pre-processing to make the generated images look photorealistic. If we disable the additional processing, these algorithms would fail to produce plausible photorealistic stylization in terms of detail preservation and photorealism. In this work, we propose an effective solution to these issues. Our method consists of a construction step (C-step) to build a photorealistic stylization network and a pruning step (P-step) for acceleration. In the C-step, we propose a dense auto-encoder named PhotoNet based on a carefully designed pre-analysis. PhotoNet integrates a feature aggregation module (BFA) and instance normalized skip links (INSL). To generate faithful stylization, we introduce multiple style transfer modules in the decoder and INSLs. PhotoNet significantly outperforms existing algorithms in terms of both efficiency and effectiveness. In the P-step, we adopt a neural architecture search method to accelerate PhotoNet. We propose an automatic network pruning framework in the manner of teacher-student learning for photorealistic stylization. The network architecture named PhotoNAS resulted from the search achieves significant acceleration over PhotoNet while keeping the stylization effects almost intact. We conduct extensive experiments on both image and video transfer. The results show that our method can produce favorable results while achieving 20-30 times acceleration in comparison with the existing state-of-the-art approaches. It is worth noting that the proposed algorithm accomplishes better performance without any pre- or post-processing.

  
Access Paper or Ask Questions

Automated Deep Photo Style Transfer

Jan 12, 2019
Sebastian Penhouët, Paul Sanzenbacher

Photorealism is a complex concept that cannot easily be formulated mathematically. Deep Photo Style Transfer is an attempt to transfer the style of a reference image to a content image while preserving its photorealism. This is achieved by introducing a constraint that prevents distortions in the content image and by applying the style transfer independently for semantically different parts of the images. In addition, an automated segmentation process is presented that consists of a neural network based segmentation method followed by a semantic grouping step. To further improve the results a measure for image aesthetics is used and elaborated. If the content and the style image are sufficiently similar, the result images look very realistic. With the automation of the image segmentation the pipeline becomes completely independent from any user interaction, which allows for new applications.

  
Access Paper or Ask Questions
1
2
3
4
5
6
7
>>