What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Jan 29, 2025
Abstract:Transformer models have made great strides in generating symbolically represented music with local coherence. However, controlling the development of motifs in a structured way with global form remains an open research area. One of the reasons for this challenge is due to the note-by-note autoregressive generation of such models, which lack the ability to correct themselves after deviations from the motif. In addition, their structural performance on datasets with shorter durations has not been studied in the literature. In this study, we propose Yin-Yang, a framework consisting of a phrase generator, phrase refiner, and phrase selector models for the development of motifs into melodies with long-term structure and controllability. The phrase refiner is trained on a novel corruption-refinement strategy which allows it to produce melodic and rhythmic variations of an original motif at generation time, thereby rectifying deviations of the phrase generator. We also introduce a new objective evaluation metric for quantifying how smoothly the motif manifests itself within the piece. Evaluation results show that our model achieves better performance compared to state-of-the-art transformer models while having the advantage of being controllable and making the generated musical structure semi-interpretable, paving the way for musical analysis. Our code and demo page can be found at https://github.com/keshavbhandari/yinyang.
* 16 Pages, 4 Figures, Accepted at Artificial Intelligence in Music,
Sound, Art and Design: 14th International Conference, EvoMUSART 2025
Via

Jan 15, 2025
Abstract:In recent years, remarkable advancements in artificial intelligence-generated content (AIGC) have been achieved in the fields of image synthesis and text generation, generating content comparable to that produced by humans. However, the quality of AI-generated music has not yet reached this standard, primarily due to the challenge of effectively controlling musical emotions and ensuring high-quality outputs. This paper presents a generalized symbolic music generation framework, XMusic, which supports flexible prompts (i.e., images, videos, texts, tags, and humming) to generate emotionally controllable and high-quality symbolic music. XMusic consists of two core components, XProjector and XComposer. XProjector parses the prompts of various modalities into symbolic music elements (i.e., emotions, genres, rhythms and notes) within the projection space to generate matching music. XComposer contains a Generator and a Selector. The Generator generates emotionally controllable and melodious music based on our innovative symbolic music representation, whereas the Selector identifies high-quality symbolic music by constructing a multi-task learning scheme involving quality assessment, emotion recognition, and genre recognition tasks. In addition, we build XMIDI, a large-scale symbolic music dataset that contains 108,023 MIDI files annotated with precise emotion and genre labels. Objective and subjective evaluations show that XMusic significantly outperforms the current state-of-the-art methods with impressive music quality. Our XMusic has been awarded as one of the nine Highlights of Collectibles at WAIC 2023. The project homepage of XMusic is https://xmusic-project.github.io.
* accepted by TMM
Via

Jan 17, 2025
Abstract:In the face of a new era of generative models, the detection of artificially generated content has become a matter of utmost importance. In particular, the ability to create credible minute-long synthetic music in a few seconds on user-friendly platforms poses a real threat of fraud on streaming services and unfair competition to human artists. This paper demonstrates the possibility (and surprising ease) of training classifiers on datasets comprising real audio and artificial reconstructions, achieving a convincing accuracy of 99.8%. To our knowledge, this marks the first publication of a AI-music detector, a tool that will help in the regulation of synthetic media. Nevertheless, informed by decades of literature on forgery detection in other fields, we stress that getting a good test score is not the end of the story. We expose and discuss several facets that could be problematic with such a deployed detector: robustness to audio manipulation, generalisation to unseen models. This second part acts as a position for future research steps in the field and a caveat to a flourishing market of artificial content checkers.
* Accepted for IEEE ICASSP 2025. arXiv admin note: substantial text
overlap with arXiv:2405.04181
Via

Feb 11, 2025
Abstract:Expressive music performance rendering involves interpreting symbolic scores with variations in timing, dynamics, articulation, and instrument-specific techniques, resulting in performances that capture musical can emotional intent. We introduce RenderBox, a unified framework for text-and-score controlled audio performance generation across multiple instruments, applying coarse-level controls through natural language descriptions and granular-level controls using music scores. Based on a diffusion transformer architecture and cross-attention joint conditioning, we propose a curriculum-based paradigm that trains from plain synthesis to expressive performance, gradually incorporating controllable factors such as speed, mistakes, and style diversity. RenderBox achieves high performance compared to baseline models across key metrics such as FAD and CLAP, and also tempo and pitch accuracy under different prompting tasks. Subjective evaluation further demonstrates that RenderBox is able to generate controllable expressive performances that sound natural and musically engaging, aligning well with prompts and intent.
Via

Jan 30, 2025
Abstract:Many video-to-audio (VTA) methods have been proposed for dubbing silent AI-generated videos. An efficient quality assessment method for AI-generated audio-visual content (AGAV) is crucial for ensuring audio-visual quality. Existing audio-visual quality assessment methods struggle with unique distortions in AGAVs, such as unrealistic and inconsistent elements. To address this, we introduce AGAVQA, the first large-scale AGAV quality assessment dataset, comprising 3,382 AGAVs from 16 VTA methods. AGAVQA includes two subsets: AGAVQA-MOS, which provides multi-dimensional scores for audio quality, content consistency, and overall quality, and AGAVQA-Pair, designed for optimal AGAV pair selection. We further propose AGAV-Rater, a LMM-based model that can score AGAVs, as well as audio and music generated from text, across multiple dimensions, and selects the best AGAV generated by VTA methods to present to the user. AGAV-Rater achieves state-of-the-art performance on AGAVQA, Text-to-Audio, and Text-to-Music datasets. Subjective tests also confirm that AGAV-Rater enhances VTA performance and user experience. The project page is available at https://agav-rater.github.io.
Via

Jan 30, 2025
Abstract:Image animation has become a promising area in multimodal research, with a focus on generating videos from reference images. While prior work has largely emphasized generic video generation guided by text, music-driven dance video generation remains underexplored. In this paper, we introduce MuseDance, an innovative end-to-end model that animates reference images using both music and text inputs. This dual input enables MuseDance to generate personalized videos that follow text descriptions and synchronize character movements with the music. Unlike existing approaches, MuseDance eliminates the need for complex motion guidance inputs, such as pose or depth sequences, making flexible and creative video generation accessible to users of all expertise levels. To advance research in this field, we present a new multimodal dataset comprising 2,904 dance videos with corresponding background music and text descriptions. Our approach leverages diffusion-based methods to achieve robust generalization, precise control, and temporal consistency, setting a new baseline for the music-driven image animation task.
Via

Jan 07, 2025
Abstract:While most music generation models generate a mixture of stems (in mono or stereo), we propose to train a multi-stem generative model with 3 stems (bass, drums and other) that learn the musical dependencies between them. To do so, we train one specialized compression algorithm per stem to tokenize the music into parallel streams of tokens. Then, we leverage recent improvements in the task of music source separation to train a multi-stream text-to-music language model on a large dataset. Finally, thanks to a particular conditioning method, our model is able to edit bass, drums or other stems on existing or generated songs as well as doing iterative composition (e.g. generating bass on top of existing drums). This gives more flexibility in music generation algorithms and it is to the best of our knowledge the first open-source multi-stem autoregressive music generation model that can perform good quality generation and coherent source editing. Code and model weights will be released and samples are available on https://simonrouard.github.io/musicgenstem/.
* 5 pages, 3 figures, accepted to ICASSP 2025
Via

Feb 18, 2025
Abstract:While neural vocoders have made significant progress in high-fidelity speech synthesis, their application on polyphonic music has remained underexplored. In this work, we propose DisCoder, a neural vocoder that leverages a generative adversarial encoder-decoder architecture informed by a neural audio codec to reconstruct high-fidelity 44.1 kHz audio from mel spectrograms. Our approach first transforms the mel spectrogram into a lower-dimensional representation aligned with the Descript Audio Codec (DAC) latent space before reconstructing it to an audio signal using a fine-tuned DAC decoder. DisCoder achieves state-of-the-art performance in music synthesis on several objective metrics and in a MUSHRA listening study. Our approach also shows competitive performance in speech synthesis, highlighting its potential as a universal vocoder.
* Accepted at ICASSP 2025
Via

Feb 18, 2025
Abstract:Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, resulting in cumbersome training and inference pipelines. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The generated samples are showcased on our project page at https://liuzh-19.github.io/SongGen/ , and the code will be available at https://github.com/LiuZH-19/SongGen .
Via

Dec 31, 2024
Abstract:Music generation has been established as a prominent topic in artificial intelligence and machine learning over recent years. In most recent works on RNN-based neural network methods have been applied for sequence generation. In contrast, generative adversarial networks (GANs) and their counterparts have been explored by very few researchersfor music generation. In this paper, a classical system was employed alongside a new system to generate creative music. Both systems were designed based on adversarial networks to generate music by learning from examples. The classical system was trained to learn a set of music pieces without differentiating between classes, whereas the new system was trained to learn the different composers and their styles to generate a creative music piece by deviating from the learned composers' styles. The base structure utilized was generative adversarial networks (GANs), which are capable of generating novel outputs given a set of inputs to learn from and mimic their distribution. It has been shown in previous work that GANs are limited in their original design with respect to creative outputs. Building on the Creative Adversarial Networks (CAN) , this work applied them in the music domain rather than the visual art domain. Additionally, unrolled CAN was introduced to prevent mode collapse. Experiments were conducted on both GAN and CAN for generating music, and their capabilities were measured in terms of deviation from the input set.
Via
