Abstract:This paper provides a detailed analysis of the NeuroPiano dataset, which comprise 104 audio recordings of student piano performances accompanied with 2255 textual feedback and ratings given by professional pianists. We offer a statistical overview of the dataset, focusing on the standardization of annotations and inter-annotator agreement across 12 evaluative questions concerning performance quality. We also explore the predictive relationship between audio features and teacher ratings via machine learning, as well as annotations provided for text analysis of the responses.
Abstract:Research in music understanding has extensively explored composition-level attributes such as key, genre, and instrumentation through advanced representations, leading to cross-modal applications using large language models. However, aspects of musical performance such as stylistic expression and technique remain underexplored, along with the potential of using large language models to enhance educational outcomes with customized feedback. To bridge this gap, we introduce LLaQo, a Large Language Query-based music coach that leverages audio language modeling to provide detailed and formative assessments of music performances. We also introduce instruction-tuned query-response datasets that cover a variety of performance dimensions from pitch accuracy to articulation, as well as contextual performance understanding (such as difficulty and performance techniques). Utilizing AudioMAE encoder and Vicuna-7b LLM backend, our model achieved state-of-the-art (SOTA) results in predicting teachers' performance ratings, as well as in identifying piece difficulty and playing techniques. Textual responses from LLaQo was moreover rated significantly higher compared to other baseline models in a user study using audio-text matching. Our proposed model can thus provide informative answers to open-ended questions related to musical performance from audio data.
Abstract:In recent years, foundation models (FMs) such as large language models (LLMs) and latent diffusion models (LDMs) have profoundly impacted diverse sectors, including music. This comprehensive review examines state-of-the-art (SOTA) pre-trained models and foundation models in music, spanning from representation learning, generative learning and multimodal learning. We first contextualise the significance of music in various industries and trace the evolution of AI in music. By delineating the modalities targeted by foundation models, we discover many of the music representations are underexplored in FM development. Then, emphasis is placed on the lack of versatility of previous methods on diverse music applications, along with the potential of FMs in music understanding, generation and medical application. By comprehensively exploring the details of the model pre-training paradigm, architectural choices, tokenisation, finetuning methodologies and controllability, we emphasise the important topics that should have been well explored, like instruction tuning and in-context learning, scaling law and emergent ability, as well as long-sequence modelling etc. A dedicated section presents insights into music agents, accompanied by a thorough analysis of datasets and evaluations essential for pre-training and downstream tasks. Finally, by underscoring the vital importance of ethical considerations, we advocate that following research on FM for music should focus more on such issues as interpretability, transparency, human responsibility, and copyright issues. The paper offers insights into future challenges and trends on FMs for music, aiming to shape the trajectory of human-AI collaboration in the music realm.
Abstract:Existing work on pitch and timbre disentanglement has been mostly focused on single-instrument music audio, excluding the cases where multiple instruments are presented. To fill the gap, we propose DisMix, a generative framework in which the pitch and timbre representations act as modular building blocks for constructing the melody and instrument of a source, and the collection of which forms a set of per-instrument latent representations underlying the observed mixture. By manipulating the representations, our model samples mixtures with novel combinations of pitch and timbre of the constituent instruments. We can jointly learn the disentangled pitch-timbre representations and a latent diffusion transformer that reconstructs the mixture conditioned on the set of source-level representations. We evaluate the model using both a simple dataset of isolated chords and a realistic four-part chorales in the style of J.S. Bach, identify the key components for the success of disentanglement, and demonstrate the application of mixture transformation based on source-level attribute manipulation.
Abstract:We introduce GAPS (Guitar-Aligned Performance Scores), a new dataset of classical guitar performances, and a benchmark guitar transcription model that achieves state-of-the-art performance on GuitarSet in both supervised and zero-shot settings. GAPS is the largest dataset of real guitar audio, containing 14 hours of freely available audio-score aligned pairs, recorded in diverse conditions by over 200 performers, together with high-resolution note-level MIDI alignments and performance videos. These enable us to train a state-of-the-art model for automatic transcription of solo guitar recordings which can generalise well to real world audio that is unseen during training.
Abstract:Guitar tablatures enrich the structure of traditional music notation by assigning each note to a string and fret of a guitar in a particular tuning, indicating precisely where to play the note on the instrument. The problem of generating tablature from a symbolic music representation involves inferring this string and fret assignment per note across an entire composition or performance. On the guitar, multiple string-fret assignments are possible for most pitches, which leads to a large combinatorial space that prevents exhaustive search approaches. Most modern methods use constraint-based dynamic programming to minimize some cost function (e.g.\ hand position movement). In this work, we introduce a novel deep learning solution to symbolic guitar tablature estimation. We train an encoder-decoder Transformer model in a masked language modeling paradigm to assign notes to strings. The model is first pre-trained on DadaGP, a dataset of over 25K tablatures, and then fine-tuned on a curated set of professionally transcribed guitar performances. Given the subjective nature of assessing tablature quality, we conduct a user study amongst guitarists, wherein we ask participants to rate the playability of multiple versions of tablature for the same four-bar excerpt. The results indicate our system significantly outperforms competing algorithms.
Abstract:Our study investigates an approach for understanding musical performances through the lens of audio encoding models, focusing on the domain of solo Western classical piano music. Compared to composition-level attribute understanding such as key or genre, we identify a knowledge gap in performance-level music understanding, and address three critical tasks: expertise ranking, difficulty estimation, and piano technique detection, introducing a comprehensive Pianism-Labelling Dataset (PLD) for this purpose. We leverage pre-trained audio encoders, specifically Jukebox, Audio-MAE, MERT, and DAC, demonstrating varied capabilities in tackling downstream tasks, to explore whether domain-specific fine-tuning enhances capability in capturing performance nuances. Our best approach achieved 93.6\% accuracy in expertise ranking, 33.7\% in difficulty estimation, and 46.7\% in technique detection, with Audio-MAE as the overall most effective encoder. Finally, we conducted a case study on Chopin Piano Competition data using trained models for expertise ranking, which highlights the challenge of accurately assessing top-tier performances.
Abstract:Multi-instrument music transcription aims to convert polyphonic music recordings into musical scores assigned to each instrument. This task is challenging for modeling as it requires simultaneously identifying multiple instruments and transcribing their pitch and precise timing, and the lack of fully annotated data adds to the training difficulties. This paper introduces YourMT3+, a suite of models for enhanced multi-instrument music transcription based on the recent language token decoding approach of MT3. We strengthen its encoder by adopting a hierarchical attention transformer in the time-frequency domain and integrating a mixture of experts (MoE). To address data limitations, we introduce a new multi-channel decoding method for training with incomplete annotations and propose intra- and cross-stem augmentation for dataset mixing. Our experiments demonstrate direct vocal transcription capabilities, eliminating the need for voice separation pre-processors. Benchmarks across ten public datasets show our models' competitiveness with, or superiority to, existing transcription models. Further testing on pop music recordings highlights the limitations of current models. Fully reproducible code and datasets are available at \url{https://github.com/mimbres/YourMT3}
Abstract:In the pursuit of developing expressive music performance models using artificial intelligence, this paper introduces DExter, a new approach leveraging diffusion probabilistic models to render Western classical piano performances. In this approach, performance parameters are represented in a continuous expression space and a diffusion model is trained to predict these continuous parameters while being conditioned on the musical score. Furthermore, DExter also enables the generation of interpretations (expressive variations of a performance) guided by perceptually meaningful features by conditioning jointly on score and perceptual feature representations. Consequently, we find that our model is useful for learning expressive performance, generating perceptually steered performances, and transferring performance styles. We assess the model through quantitative and qualitative analyses, focusing on specific performance metrics regarding dimensions like asynchrony and articulation, as well as through listening tests comparing generated performances with different human interpretations. Results show that DExter is able to capture the time-varying correlation of the expressive parameters, and compares well to existing rendering models in subjectively evaluated ratings. The perceptual-feature-conditioned generation and transferring capabilities of DExter are verified by a proxy model predicting perceptual characteristics of differently steered performances.
Abstract:Recent advances in text-to-music editing, which employ text queries to modify music (e.g.\ by changing its style or adjusting instrumental components), present unique challenges and opportunities for AI-assisted music creation. Previous approaches in this domain have been constrained by the necessity to train specific editing models from scratch, which is both resource-intensive and inefficient; other research uses large language models to predict edited music, resulting in imprecise audio reconstruction. To Combine the strengths and address these limitations, we introduce Instruct-MusicGen, a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions such as adding, removing, or separating stems. Our approach involves a modification of the original MusicGen architecture by incorporating a text fusion module and an audio fusion module, which allow the model to process instruction texts and audio inputs concurrently and yield the desired edited music. Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks. This advancement not only enhances the efficiency of text-to-music editing but also broadens the applicability of music language models in dynamic music production environments.