What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
May 20, 2025
Abstract:Understanding visual narratives is crucial for examining the evolving dynamics of media representation. This study introduces VisTopics, a computational framework designed to analyze large-scale visual datasets through an end-to-end pipeline encompassing frame extraction, deduplication, and semantic clustering. Applying VisTopics to a dataset of 452 NBC News videos resulted in reducing 11,070 frames to 6,928 deduplicated frames, which were then semantically analyzed to uncover 35 topics ranging from political events to environmental crises. By integrating Latent Dirichlet Allocation with caption-based semantic analysis, VisTopics demonstrates its potential to unravel patterns in visual framing across diverse contexts. This approach enables longitudinal studies and cross-platform comparisons, shedding light on the intersection of media, technology, and public discourse. The study validates the method's reliability through human coding accuracy metrics and emphasizes its scalability for communication research. By bridging the gap between visual representation and semantic meaning, VisTopics provides a transformative tool for advancing the methodological toolkit in computational media studies. Future research may leverage VisTopics for comparative analyses across media outlets or geographic regions, offering insights into the shifting landscapes of media narratives and their societal implications.
Via

Jun 09, 2025
Abstract:Modern large language models (LLMs) are inherently auto-regressive, requiring input to be serialized into flat sequences regardless of their structural dependencies. This serialization hinders the model's ability to leverage structural inductive biases, especially in tasks such as retrieval-augmented generation (RAG) and reasoning on data with native graph structures, where inter-segment dependencies are crucial. We introduce Graph-KV with the potential to overcome this limitation. Graph-KV leverages the KV-cache of text segments as condensed representations and governs their interaction through structural inductive biases. In this framework, 'target' segments selectively attend only to the KV-caches of their designated 'source' segments, rather than all preceding segments in a serialized sequence. This approach induces a graph-structured block mask, sparsifying attention and enabling a message-passing-like step within the LLM. Furthermore, strategically allocated positional encodings for source and target segments reduce positional bias and context window consumption. We evaluate Graph-KV across three scenarios: (1) seven RAG benchmarks spanning direct inference, multi-hop reasoning, and long-document understanding; (2) Arxiv-QA, a novel academic paper QA task with full-text scientific papers structured as citation ego-graphs; and (3) paper topic classification within a citation network. By effectively reducing positional bias and harnessing structural inductive biases, Graph-KV substantially outperforms baselines, including standard costly sequential encoding, across various settings. Code and the Graph-KV data are publicly available.
Via

Jun 04, 2025
Abstract:Contemporary approaches to assisted scientific discovery use language models to automatically generate large numbers of potential hypothesis to test, while also automatically generating code-based experiments to test those hypotheses. While hypotheses can be comparatively inexpensive to generate, automated experiments can be costly, particularly when run at scale (i.e. thousands of experiments). Developing the capacity to filter hypotheses based on their feasibility would allow discovery systems to run at scale, while increasing their likelihood of making significant discoveries. In this work we introduce Matter-of-Fact, a challenge dataset for determining the feasibility of hypotheses framed as claims. Matter-of-Fact includes 8.4k claims extracted from scientific articles spanning four high-impact contemporary materials science topics, including superconductors, semiconductors, batteries, and aerospace materials, while including qualitative and quantitative claims from theoretical, experimental, and code/simulation results. We show that strong baselines that include retrieval augmented generation over scientific literature and code generation fail to exceed 72% performance on this task (chance performance is 50%), while domain-expert verification suggests nearly all are solvable -- highlighting both the difficulty of this task for current models, and the potential to accelerate scientific discovery by making near-term progress.
* 8 pages
Via

May 16, 2025
Abstract:Understanding and recognizing customer intents in AI systems is crucial, particularly in domains characterized by short utterances and the cold start problem, where recommender systems must include new products or services without sufficient real user data. Customer utterances are characterized by infrequent word co-occurences and high term variability, which poses significant challenges for traditional methods in specifying distinct user needs and preparing synthetic queries. To address this, we propose an agentic LLM framework for topic modeling and synthetic query generation, which accelerates the discovery and recognition of customer intents. We first apply hierarchical topic modeling and intent discovery to expand a human-curated taxonomy from 36 generic user intents to 278 granular intents, demonstrating the potential of LLMs to significantly enhance topic specificity and diversity. Next, to support newly discovered intents and address the cold start problem, we generate synthetic user query data, which augments real utterances and reduces dependency on human annotation, especially in low-resource settings. Topic model experiments show substantial improvements in coherence and relevance after topic expansion, while synthetic data experiments indicate that in-class few-shot prompting significantly improves the quality and utility of synthetic queries without compromising diversity. We also show that LLM-generated intent descriptions and keywords can effectively substitute for human-curated versions when used as context for synthetic query generation. Our research underscores the scalability and utility of LLM agents in topic modeling and highlights the strategic use of synthetic utterances to enhance dataset variability and coverage for intent recognition. We present a comprehensive and robust framework for online discovery and recognition of new customer intents in dynamic domains.
Via

May 30, 2025
Abstract:Aspect-Based Sentiment Analysis (ABSA) offers granular insights into opinions but often suffers from the scarcity of diverse, labeled datasets that reflect real-world conversational nuances. This paper presents an approach for generating synthetic ABSA data using Large Language Models (LLMs) to address this gap. We detail the generation process aimed at producing data with consistent topic and sentiment distributions across multiple domains using GPT-4o. The quality and utility of the generated data were evaluated by assessing the performance of three state-of-the-art LLMs (Gemini 1.5 Pro, Claude 3.5 Sonnet, and DeepSeek-R1) on topic and sentiment classification tasks. Our results demonstrate the effectiveness of the synthetic data, revealing distinct performance trade-offs among the models: DeepSeekR1 showed higher precision, Gemini 1.5 Pro and Claude 3.5 Sonnet exhibited strong recall, and Gemini 1.5 Pro offered significantly faster inference. We conclude that LLM-based synthetic data generation is a viable and flexible method for creating valuable ABSA resources, facilitating research and model evaluation without reliance on limited or inaccessible real-world labeled data.
* 11 pages, 3 figures, 5 tables, 6th International Conference on
Natural Language Computing and AI (NLCAI 2025), ISBN : 978-1-923107-59-5,
Computer Science & Information Technology (CS & IT), ISSN : 2231 - 5403,
Volume 15, Number 10, May 2025
Via

May 30, 2025
Abstract:Remote sensing image (RSI) denoising is an important topic in the field of remote sensing. Despite the impressive denoising performance of RSI denoising methods, most current deep learning-based approaches function as black boxes and lack integration with physical information models, leading to limited interpretability. Additionally, many methods may struggle with insufficient attention to non-local self-similarity in RSI and require tedious tuning of regularization parameters to achieve optimal performance, particularly in conventional iterative optimization approaches. In this paper, we first propose a novel RSI denoising method named sparse tensor-aided representation network (STAR-Net), which leverages a low-rank prior to effectively capture the non-local self-similarity within RSI. Furthermore, we extend STAR-Net to a sparse variant called STAR-Net-S to deal with the interference caused by non-Gaussian noise in original RSI for the purpose of improving robustness. Different from conventional iterative optimization, we develop an alternating direction method of multipliers (ADMM)-guided deep unrolling network, in which all regularization parameters can be automatically learned, thus inheriting the advantages of both model-based and deep learning-based approaches and successfully addressing the above-mentioned shortcomings. Comprehensive experiments on synthetic and real-world datasets demonstrate that STAR-Net and STAR-Net-S outperform state-of-the-art RSI denoising methods.
Via

May 20, 2025
Abstract:This technical report presents a natural language processing (NLP)-based approach for systematically classifying scientific literature on childhood speech disorders. We retrieved and filtered 4,804 relevant articles published after 2015 from the PubMed database using domain-specific keywords. After cleaning and pre-processing the abstracts, we applied two topic modeling techniques - Latent Dirichlet Allocation (LDA) and BERTopic - to identify latent thematic structures in the corpus. Our models uncovered 14 clinically meaningful clusters, such as infantile hyperactivity and abnormal epileptic behavior. To improve relevance and precision, we incorporated a custom stop word list tailored to speech pathology. Evaluation results showed that the LDA model achieved a coherence score of 0.42 and a perplexity of -7.5, indicating strong topic coherence and predictive performance. The BERTopic model exhibited a low proportion of outlier topics (less than 20%), demonstrating its capacity to classify heterogeneous literature effectively. These results provide a foundation for automating literature reviews in speech-language pathology.
Via

Jun 05, 2025
Abstract:A lack of accessible data has historically restricted malware analysis research, and practitioners have relied heavily on datasets provided by industry sources to advance. Existing public datasets are limited by narrow scope - most include files targeting a single platform, have labels supporting just one type of malware classification task, and make no effort to capture the evasive files that make malware detection difficult in practice. We present EMBER2024, a new dataset that enables holistic evaluation of malware classifiers. Created in collaboration with the authors of EMBER2017 and EMBER2018, the EMBER2024 dataset includes hashes, metadata, feature vectors, and labels for more than 3.2 million files from six file formats. Our dataset supports the training and evaluation of machine learning models on seven malware classification tasks, including malware detection, malware family classification, and malware behavior identification. EMBER2024 is the first to include a collection of malicious files that initially went undetected by a set of antivirus products, creating a "challenge" set to assess classifier performance against evasive malware. This work also introduces EMBER feature version 3, with added support for several new feature types. We are releasing the EMBER2024 dataset to promote reproducibility and empower researchers in the pursuit of new malware research topics.
Via

May 27, 2025
Abstract:Large language models (LLMs) are used globally across many languages, but their English-centric pretraining raises concerns about cross-lingual disparities for cultural awareness, often resulting in biased outputs. However, comprehensive multilingual evaluation remains challenging due to limited benchmarks and questionable translation quality. To better assess these disparities, we introduce MAKIEval, an automatic multilingual framework for evaluating cultural awareness in LLMs across languages, regions, and topics. MAKIEval evaluates open-ended text generation, capturing how models express culturally grounded knowledge in natural language. Leveraging Wikidata's multilingual structure as a cross-lingual anchor, it automatically identifies cultural entities in model outputs and links them to structured knowledge, enabling scalable, language-agnostic evaluation without manual annotation or translation. We then introduce four metrics that capture complementary dimensions of cultural awareness: granularity, diversity, cultural specificity, and consensus across languages. We assess 7 LLMs developed from different parts of the world, encompassing both open-source and proprietary systems, across 13 languages, 19 countries and regions, and 6 culturally salient topics (e.g., food, clothing). Notably, we find that models tend to exhibit stronger cultural awareness in English, suggesting that English prompts more effectively activate culturally grounded knowledge. We publicly release our code and data.
Via

May 27, 2025
Abstract:Understanding the remarkable efficacy of Adam when training transformer-based language models has become a central research topic within the optimization community. To gain deeper insights, several simplifications of Adam have been proposed, such as the signed gradient and signed momentum methods. In this work, we conduct an extensive empirical study - training over 1,300 language models across different data configurations and scales - comparing Adam to several known simplified variants. We find that signed momentum methods are faster than SGD, but consistently underperform relative to Adam, even after careful tuning of momentum, clipping setting and learning rates. However, our analysis reveals a compelling option that preserves near-optimal performance while allowing for new insightful reformulations: constraining the Adam momentum parameters to be equal. Beyond robust performance, this choice affords new theoretical insights, highlights the "secret sauce" on top of signed momentum, and grants a precise statistical interpretation: we show that Adam in this setting implements a natural online algorithm for estimating the mean and variance of gradients-one that arises from a mean-field Gaussian variational inference perspective.
Via
