Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Topic Modeling": models, code, and papers

Stability of Topic Modeling via Matrix Factorization

Sep 09, 2017
Mark Belford, Brian Mac Namee, Derek Greene

Topic models can provide us with an insight into the underlying latent structure of a large corpus of documents. A range of methods have been proposed in the literature, including probabilistic topic models and techniques based on matrix factorization. However, in both cases, standard implementations rely on stochastic elements in their initialization phase, which can potentially lead to different results being generated on the same corpus when using the same parameter values. This corresponds to the concept of "instability" which has previously been studied in the context of $k$-means clustering. In many applications of topic modeling, this problem of instability is not considered and topic models are treated as being definitive, even though the results may change considerably if the initialization process is altered. In this paper we demonstrate the inherent instability of popular topic modeling approaches, using a number of new measures to assess stability. To address this issue in the context of matrix factorization for topic modeling, we propose the use of ensemble learning strategies. Based on experiments performed on annotated text corpora, we show that a K-Fold ensemble strategy, combining both ensembles and structured initialization, can significantly reduce instability, while simultaneously yielding more accurate topic models.


Fast, Flexible Models for Discovering Topic Correlation across Weakly-Related Collections

Aug 19, 2015
Jingwei Zhang, Aaron Gerow, Jaan Altosaar, James Evans, Richard Jean So

Weak topic correlation across document collections with different numbers of topics in individual collections presents challenges for existing cross-collection topic models. This paper introduces two probabilistic topic models, Correlated LDA (C-LDA) and Correlated HDP (C-HDP). These address problems that can arise when analyzing large, asymmetric, and potentially weakly-related collections. Topic correlations in weakly-related collections typically lie in the tail of the topic distribution, where they would be overlooked by models unable to fit large numbers of topics. To efficiently model this long tail for large-scale analysis, our models implement a parallel sampling algorithm based on the Metropolis-Hastings and alias methods (Yuan et al., 2015). The models are first evaluated on synthetic data, generated to simulate various collection-level asymmetries. We then present a case study of modeling over 300k documents in collections of sciences and humanities research from JSTOR.

* EMNLP 2015 

Deep topic modeling by multilayer bootstrap network and lasso

Oct 24, 2019
Jianyu Wang, Xiao-Lei Zhang

Topic modeling is widely studied for the dimension reduction and analysis of documents. However, it is formulated as a difficult optimization problem. Current approximate solutions also suffer from inaccurate model- or data-assumptions. To deal with the above problems, we propose a polynomial-time deep topic model with no model and data assumptions. Specifically, we first apply multilayer bootstrap network (MBN), which is an unsupervised deep model, to reduce the dimension of documents, and then use the low-dimensional data representations or their clustering results as the target of supervised Lasso for topic word discovery. To our knowledge, this is the first time that MBN and Lasso are applied to unsupervised topic modeling. Experimental comparison results with five representative topic models on the 20-newsgroups and TDT2 corpora illustrate the effectiveness of the proposed algorithm.


Topic Modeling on Health Journals with Regularized Variational Inference

Jan 15, 2018
Robert Giaquinto, Arindam Banerjee

Topic modeling enables exploration and compact representation of a corpus. The CaringBridge (CB) dataset is a massive collection of journals written by patients and caregivers during a health crisis. Topic modeling on the CB dataset, however, is challenging due to the asynchronous nature of multiple authors writing about their health journeys. To overcome this challenge we introduce the Dynamic Author-Persona topic model (DAP), a probabilistic graphical model designed for temporal corpora with multiple authors. The novelty of the DAP model lies in its representation of authors by a persona --- where personas capture the propensity to write about certain topics over time. Further, we present a regularized variational inference algorithm, which we use to encourage the DAP model's personas to be distinct. Our results show significant improvements over competing topic models --- particularly after regularization, and highlight the DAP model's unique ability to capture common journeys shared by different authors.

* Published in Thirty-Second AAAI Conference on Artificial Intelligence, February 2018, New Orleans, Louisiana, USA 

Bayesian Analysis of Dynamic Linear Topic Models

Nov 12, 2015
Chris Glynn, Surya T. Tokdar, David L. Banks, Brian Howard

In dynamic topic modeling, the proportional contribution of a topic to a document depends on the temporal dynamics of that topic's overall prevalence in the corpus. We extend the Dynamic Topic Model of Blei and Lafferty (2006) by explicitly modeling document level topic proportions with covariates and dynamic structure that includes polynomial trends and periodicity. A Markov Chain Monte Carlo (MCMC) algorithm that utilizes Polya-Gamma data augmentation is developed for posterior inference. Conditional independencies in the model and sampling are made explicit, and our MCMC algorithm is parallelized where possible to allow for inference in large corpora. To address computational bottlenecks associated with Polya-Gamma sampling, we appeal to the Central Limit Theorem to develop a Gaussian approximation to the Polya-Gamma random variable. This approximation is fast and reliable for parameter values relevant in the text mining domain. Our model and inference algorithm are validated with multiple simulation examples, and we consider the application of modeling trends in PubMed abstracts. We demonstrate that sharing information across documents is critical for accurately estimating document-specific topic proportions. We also show that explicitly modeling polynomial and periodic behavior improves our ability to predict topic prevalence at future time points.


VSEC-LDA: Boosting Topic Modeling with Embedded Vocabulary Selection

Jan 15, 2020
Yuzhen Ding, Baoxin Li

Topic modeling has found wide application in many problems where latent structures of the data are crucial for typical inference tasks. When applying a topic model, a relatively standard pre-processing step is to first build a vocabulary of frequent words. Such a general pre-processing step is often independent of the topic modeling stage, and thus there is no guarantee that the pre-generated vocabulary can support the inference of some optimal (or even meaningful) topic models appropriate for a given task, especially for computer vision applications involving "visual words". In this paper, we propose a new approach to topic modeling, termed Vocabulary-Selection-Embedded Correspondence-LDA (VSEC-LDA), which learns the latent model while simultaneously selecting most relevant words. The selection of words is driven by an entropy-based metric that measures the relative contribution of the words to the underlying model, and is done dynamically while the model is learned. We present three variants of VSEC-LDA and evaluate the proposed approach with experiments on both synthetic and real databases from different applications. The results demonstrate the effectiveness of built-in vocabulary selection and its importance in improving the performance of topic modeling.


When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity

Aug 13, 2013
Animashree Anandkumar, Daniel Hsu, Majid Janzamin, Sham Kakade

Overcomplete latent representations have been very popular for unsupervised feature learning in recent years. In this paper, we specify which overcomplete models can be identified given observable moments of a certain order. We consider probabilistic admixture or topic models in the overcomplete regime, where the number of latent topics can greatly exceed the size of the observed word vocabulary. While general overcomplete topic models are not identifiable, we establish generic identifiability under a constraint, referred to as topic persistence. Our sufficient conditions for identifiability involve a novel set of "higher order" expansion conditions on the topic-word matrix or the population structure of the model. This set of higher-order expansion conditions allow for overcomplete models, and require the existence of a perfect matching from latent topics to higher order observed words. We establish that random structured topic models are identifiable w.h.p. in the overcomplete regime. Our identifiability results allows for general (non-degenerate) distributions for modeling the topic proportions, and thus, we can handle arbitrarily correlated topics in our framework. Our identifiability results imply uniqueness of a class of tensor decompositions with structured sparsity which is contained in the class of Tucker decompositions, but is more general than the Candecomp/Parafac (CP) decomposition.


jLDADMM: A Java package for the LDA and DMM topic models

Aug 11, 2018
Dat Quoc Nguyen

In this technical report, we present jLDADMM---an easy-to-use Java toolkit for conventional topic models. jLDADMM is released to provide alternatives for topic modeling on normal or short texts. It provides implementations of the Latent Dirichlet Allocation topic model and the one-topic-per-document Dirichlet Multinomial Mixture model (i.e. mixture of unigrams), using collapsed Gibbs sampling. In addition, jLDADMM supplies a document clustering evaluation to compare topic models. jLDADMM is open-source and available to download at:


Topic Modeling with Wasserstein Autoencoders

Jul 24, 2019
Feng Nan, Ran Ding, Ramesh Nallapati, Bing Xiang

We propose a novel neural topic model in the Wasserstein autoencoders (WAE) framework. Unlike existing variational autoencoder based models, we directly enforce Dirichlet prior on the latent document-topic vectors. We exploit the structure of the latent space and apply a suitable kernel in minimizing the Maximum Mean Discrepancy (MMD) to perform distribution matching. We discover that MMD performs much better than the Generative Adversarial Network (GAN) in matching high dimensional Dirichlet distribution. We further discover that incorporating randomness in the encoder output during training leads to significantly more coherent topics. To measure the diversity of the produced topics, we propose a simple topic uniqueness metric. Together with the widely used coherence measure NPMI, we offer a more wholistic evaluation of topic quality. Experiments on several real datasets show that our model produces significantly better topics than existing topic models.

* to appear at ACL 2019 

Generalized Topic Modeling

Nov 04, 2016
Avrim Blum, Nika Haghtalab

Recently there has been significant activity in developing algorithms with provable guarantees for topic modeling. In standard topic models, a topic (such as sports, business, or politics) is viewed as a probability distribution $\vec a_i$ over words, and a document is generated by first selecting a mixture $\vec w$ over topics, and then generating words i.i.d. from the associated mixture $A{\vec w}$. Given a large collection of such documents, the goal is to recover the topic vectors and then to correctly classify new documents according to their topic mixture. In this work we consider a broad generalization of this framework in which words are no longer assumed to be drawn i.i.d. and instead a topic is a complex distribution over sequences of paragraphs. Since one could not hope to even represent such a distribution in general (even if paragraphs are given using some natural feature representation), we aim instead to directly learn a document classifier. That is, we aim to learn a predictor that given a new document, accurately predicts its topic mixture, without learning the distributions explicitly. We present several natural conditions under which one can do this efficiently and discuss issues such as noise tolerance and sample complexity in this model. More generally, our model can be viewed as a generalization of the multi-view or co-training setting in machine learning.