Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Text Classification": models, code, and papers

Biologically Plausible Learning of Text Representation with Spiking Neural Networks

Jun 26, 2020
Marcin Białas, Marcin Michał Mirończuk, Jacek Mańdziuk

This study proposes a novel biologically plausible mechanism for generating low-dimensional spike-based text representation. First, we demonstrate how to transform documents into series of spikes spike trains which are subsequently used as input in the training process of a spiking neural network (SNN). The network is composed of biologically plausible elements, and trained according to the unsupervised Hebbian learning rule, Spike-Timing-Dependent Plasticity (STDP). After training, the SNN can be used to generate low-dimensional spike-based text representation suitable for text/document classification. Empirical results demonstrate that the generated text representation may be effectively used in text classification leading to an accuracy of $80.19\%$ on the bydate version of the 20 newsgroups data set, which is a leading result amongst approaches that rely on low-dimensional text representations.

* This article was originally submitted for Parallel Problem Solving from Nature conference and will be available in Springer Lecture Notes in Computer Science (LNCS) 
  

Generalised Differential Privacy for Text Document Processing

Nov 26, 2018
Natasha Fernandes, Mark Dras, Annabelle McIver

We address the problem of how to "obfuscate" texts by removing stylistic clues which can identify authorship, whilst preserving (as much as possible) the content of the text. In this paper we combine ideas from "generalised differential privacy" and machine learning techniques for text processing to model privacy for text documents. We define a privacy mechanism that operates at the level of text documents represented as "bags-of-words" - these representations are typical in machine learning and contain sufficient information to carry out many kinds of classification tasks including topic identification and authorship attribution (of the original documents). We show that our mechanism satisfies privacy with respect to a metric for semantic similarity, thereby providing a balance between utility, defined by the semantic content of texts, with the obfuscation of stylistic clues. We demonstrate our implementation on a "fan fiction" dataset, confirming that it is indeed possible to disguise writing style effectively whilst preserving enough information and variation for accurate content classification tasks.

  

Neural Abstractive Text Summarization and Fake News Detection

Mar 24, 2019
Soheil Esmaeilzadeh, Gao Xian Peh, Angela Xu

In this work, we study abstractive text summarization by exploring different models such as LSTM-encoder-decoder with attention, pointer-generator networks, coverage mechanisms, and transformers. Upon extensive and careful hyperparameter tuning we compare the proposed architectures against each other for the abstractive text summarization task. Finally, as an extension of our work, we apply our text summarization model as a feature extractor for a fake news detection task where the news articles prior to classification will be summarized and the results are compared against the classification using only the original news text. keywords: abstractive text summarization, pointer-generator, coverage mechanism, transformers, fake news detection

  

mSLAM: Massively multilingual joint pre-training for speech and text

Feb 03, 2022
Ankur Bapna, Colin Cherry, Yu Zhang, Ye Jia, Melvin Johnson, Yong Cheng, Simran Khanuja, Jason Riesa, Alexis Conneau

We present mSLAM, a multilingual Speech and LAnguage Model that learns cross-lingual cross-modal representations of speech and text by pre-training jointly on large amounts of unlabeled speech and text in multiple languages. mSLAM combines w2v-BERT pre-training on speech with SpanBERT pre-training on character-level text, along with Connectionist Temporal Classification (CTC) losses on paired speech and transcript data, to learn a single model capable of learning from and representing both speech and text signals in a shared representation space. We evaluate mSLAM on several downstream speech understanding tasks and find that joint pre-training with text improves quality on speech translation, speech intent classification and speech language-ID while being competitive on multilingual ASR, when compared against speech-only pre-training. Our speech translation model demonstrates zero-shot text translation without seeing any text translation data, providing evidence for cross-modal alignment of representations. mSLAM also benefits from multi-modal fine-tuning, further improving the quality of speech translation by directly leveraging text translation data during the fine-tuning process. Our empirical analysis highlights several opportunities and challenges arising from large-scale multimodal pre-training, suggesting directions for future research.

  

Conical Classification For Computationally Efficient One-Class Topic Determination

Oct 31, 2021
Sameer Khanna

As the Internet grows in size, so does the amount of text based information that exists. For many application spaces it is paramount to isolate and identify texts that relate to a particular topic. While one-class classification would be ideal for such analysis, there is a relative lack of research regarding efficient approaches with high predictive power. By noting that the range of documents we wish to identify can be represented as positive linear combinations of the Vector Space Model representing our text, we propose Conical classification, an approach that allows us to identify if a document is of a particular topic in a computationally efficient manner. We also propose Normal Exclusion, a modified version of Bi-Normal Separation that makes it more suitable within the one-class classification context. We show in our analysis that our approach not only has higher predictive power on our datasets, but is also faster to compute.

* Findings in Empirical Methods in Natural Language Processing 2021 
  

Leap-LSTM: Enhancing Long Short-Term Memory for Text Categorization

May 28, 2019
Ting Huang, Gehui Shen, Zhi-Hong Deng

Recurrent Neural Networks (RNNs) are widely used in the field of natural language processing (NLP), ranging from text categorization to question answering and machine translation. However, RNNs generally read the whole text from beginning to end or vice versa sometimes, which makes it inefficient to process long texts. When reading a long document for a categorization task, such as topic categorization, large quantities of words are irrelevant and can be skipped. To this end, we propose Leap-LSTM, an LSTM-enhanced model which dynamically leaps between words while reading texts. At each step, we utilize several feature encoders to extract messages from preceding texts, following texts and the current word, and then determine whether to skip the current word. We evaluate Leap-LSTM on several text categorization tasks: sentiment analysis, news categorization, ontology classification and topic classification, with five benchmark data sets. The experimental results show that our model reads faster and predicts better than standard LSTM. Compared to previous models which can also skip words, our model achieves better trade-offs between performance and efficiency.

* Accepted by IJCAI 2019, 7 pages, 3 figures 
  

Connecting the Dots between Audio and Text without Parallel Data through Visual Knowledge Transfer

Dec 16, 2021
Yanpeng Zhao, Jack Hessel, Youngjae Yu, Ximing Lu, Rowan Zellers, Yejin Choi

Machines that can represent and describe environmental soundscapes have practical potential, e.g., for audio tagging and captioning systems. Prevailing learning paradigms have been relying on parallel audio-text data, which is, however, scarcely available on the web. We propose VIP-ANT that induces \textbf{A}udio-\textbf{T}ext alignment without using any parallel audio-text data. Our key idea is to share the image modality between bi-modal image-text representations and bi-modal image-audio representations; the image modality functions as a pivot and connects audio and text in a tri-modal embedding space implicitly. In a difficult zero-shot setting with no paired audio-text data, our model demonstrates state-of-the-art zero-shot performance on the ESC50 and US8K audio classification tasks, and even surpasses the supervised state of the art for Clotho caption retrieval (with audio queries) by 2.2\% [email protected] We further investigate cases of minimal audio-text supervision, finding that, e.g., just a few hundred supervised audio-text pairs increase the zero-shot audio classification accuracy by 8\% on US8K. However, to match human parity on some zero-shot tasks, our empirical scaling experiments suggest that we would need about $2^{21} \approx 2M$ supervised audio-caption pairs. Our work opens up new avenues for learning audio-text connections with little to no parallel audio-text data.

* Our code is available at https://github.com/zhaoyanpeng/vipant 
  

SERC: Syntactic and Semantic Sequence based Event Relation Classification

Nov 09, 2021
Kritika Venkatachalam, Raghava Mutharaju, Sumit Bhatia

Temporal and causal relations play an important role in determining the dependencies between events. Classifying the temporal and causal relations between events has many applications, such as generating event timelines, event summarization, textual entailment and question answering. Temporal and causal relations are closely related and influence each other. So we propose a joint model that incorporates both temporal and causal features to perform causal relation classification. We use the syntactic structure of the text for identifying temporal and causal relations between two events from the text. We extract parts-of-speech tag sequence, dependency tag sequence and word sequence from the text. We propose an LSTM based model for temporal and causal relation classification that captures the interrelations between the three encoded features. Evaluation of our model on four popular datasets yields promising results for temporal and causal relation classification.

* Accepted at the 33rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2021) 
  

Span Classification with Structured Information for Disfluency Detection in Spoken Utterances

Mar 30, 2022
Sreyan Ghosh, Sonal Kumar, Yaman Kumar Singla, Rajiv Ratn Shah, S. Umesh

Existing approaches in disfluency detection focus on solving a token-level classification task for identifying and removing disfluencies in text. Moreover, most works focus on leveraging only contextual information captured by the linear sequences in text, thus ignoring the structured information in text which is efficiently captured by dependency trees. In this paper, building on the span classification paradigm of entity recognition, we propose a novel architecture for detecting disfluencies in transcripts from spoken utterances, incorporating both contextual information through transformers and long-distance structured information captured by dependency trees, through graph convolutional networks (GCNs). Experimental results show that our proposed model achieves state-of-the-art results on the widely used English Switchboard for disfluency detection and outperforms prior-art by a significant margin. We make all our codes publicly available on GitHub (https://github.com/Sreyan88/Disfluency-Detection-with-Span-Classification)

  
<<
30
31
32
33
34
35
36
37
38
39
40
41
42
>>