Misinformation and fake news have become a pressing societal challenge, driving the need for reliable automated detection methods. Prior research has highlighted sentiment as an important signal in fake news detection, either by analyzing which sentiments are associated with fake news or by using sentiment and emotion features for classification. However, this poses a vulnerability since adversaries can manipulate sentiment to evade detectors especially with the advent of large language models (LLMs). A few studies have explored adversarial samples generated by LLMs, but they mainly focus on stylistic features such as writing style of news publishers. Thus, the crucial vulnerability of sentiment manipulation remains largely unexplored. In this paper, we investigate the robustness of state-of-the-art fake news detectors under sentiment manipulation. We introduce AdSent, a sentiment-robust detection framework designed to ensure consistent veracity predictions across both original and sentiment-altered news articles. Specifically, we (1) propose controlled sentiment-based adversarial attacks using LLMs, (2) analyze the impact of sentiment shifts on detection performance. We show that changing the sentiment heavily impacts the performance of fake news detection models, indicating biases towards neutral articles being real, while non-neutral articles are often classified as fake content. (3) We introduce a novel sentiment-agnostic training strategy that enhances robustness against such perturbations. Extensive experiments on three benchmark datasets demonstrate that AdSent significantly outperforms competitive baselines in both accuracy and robustness, while also generalizing effectively to unseen datasets and adversarial scenarios.
Qualitative research often contains personal, contextual, and organizational details that pose privacy risks if not handled appropriately. Manual anonymization is time-consuming, inconsistent, and frequently omits critical identifiers. Existing automated tools tend to rely on pattern matching or fixed rules, which fail to capture context and may alter the meaning of the data. This study uses local LLMs to build a reliable, repeatable, and context-aware anonymization process for detecting and anonymizing sensitive data in qualitative transcripts. We introduce a Structured Framework for Adaptive Anonymizer (SFAA) that includes three steps: detection, classification, and adaptive anonymization. The SFAA incorporates four anonymization strategies: rule-based substitution, context-aware rewriting, generalization, and suppression. These strategies are applied based on the identifier type and the risk level. The identifiers handled by the SFAA are guided by major international privacy and research ethics standards, including the GDPR, HIPAA, and OECD guidelines. This study followed a dual-method evaluation that combined manual and LLM-assisted processing. Two case studies were used to support the evaluation. The first includes 82 face-to-face interviews on gamification in organizations. The second involves 93 machine-led interviews using an AI-powered interviewer to test LLM awareness and workplace privacy. Two local models, LLaMA and Phi were used to evaluate the performance of the proposed framework. The results indicate that the LLMs found more sensitive data than a human reviewer. Phi outperformed LLaMA in finding sensitive data, but made slightly more errors. Phi was able to find over 91% of the sensitive data and 94.8% kept the same sentiment as the original text, which means it was very accurate, hence, it does not affect the analysis of the qualitative data.
Human cognition exhibits strong circadian modulation, yet its influence on high-dimensional semantic behavior remains poorly understood. Using large-scale Reddit data, we quantify time-of-day variation in language use by embedding text into a pretrained transformer model and measuring semantic entropy as an index of linguistic exploration-exploitation, for which we show a robust circadian rhythmicity that could be entrained by seasonal light cues. Distinguishing between local and global semantic entropy reveals a systematic temporal dissociation: local semantic exploration peaks in the morning, reflecting broader exploration of semantic space, whereas global semantic diversity peaks later in the day as submissions accumulate around already established topics, consistent with "rich-get-richer" dynamics. These patterns are not explained by sentiment or affective valence, indicating that semantic exploration captures a cognitive dimension distinct from mood. The observed temporal structure aligns with known diurnal patterns in neuromodulatory systems, suggesting that biological circadian rhythms extend to the semantic domain.
Multimodal Sentiment Analysis integrates Linguistic, Visual, and Acoustic. Mainstream approaches based on modality-invariant and modality-specific factorization or on complex fusion still rely on spatiotemporal mixed modeling. This ignores spatiotemporal heterogeneity, leading to spatiotemporal information asymmetry and thus limited performance. Hence, we propose TSDA, Temporal-Spatial Decouple before Act, which explicitly decouples each modality into temporal dynamics and spatial structural context before any interaction. For every modality, a temporal encoder and a spatial encoder project signals into separate temporal and spatial body. Factor-Consistent Cross-Modal Alignment then aligns temporal features only with their temporal counterparts across modalities, and spatial features only with their spatial counterparts. Factor specific supervision and decorrelation regularization reduce cross factor leakage while preserving complementarity. A Gated Recouple module subsequently recouples the aligned streams for task. Extensive experiments show that TSDA outperforms baselines. Ablation analysis studies confirm the necessity and interpretability of the design.
Large Language Models (LLMs) are increasingly adopted in the financial domain. Their exceptional capabilities to analyse textual data make them well-suited for inferring the sentiment of finance-related news. Such feedback can be leveraged by algorithmic trading systems (ATS) to guide buy/sell decisions. However, this practice bears the risk that a threat actor may craft "adversarial news" intended to mislead an LLM. In particular, the news headline may include "malicious" content that remains invisible to human readers but which is still ingested by the LLM. Although prior work has studied textual adversarial examples, their system-wide impact on LLM-supported ATS has not yet been quantified in terms of monetary risk. To address this threat, we consider an adversary with no direct access to an ATS but able to alter stock-related news headlines on a single day. We evaluate two human-imperceptible manipulations in a financial context: Unicode homoglyph substitutions that misroute models during stock-name recognition, and hidden-text clauses that alter the sentiment of the news headline. We implement a realistic ATS in Backtrader that fuses an LSTM-based price forecast with LLM-derived sentiment (FinBERT, FinGPT, FinLLaMA, and six general-purpose LLMs), and quantify monetary impact using portfolio metrics. Experiments on real-world data show that manipulating a one-day attack over 14 months can reliably mislead LLMs and reduce annual returns by up to 17.7 percentage points. To assess real-world feasibility, we analyze popular scraping libraries and trading platforms and survey 27 FinTech practitioners, confirming our hypotheses. We notified trading platform owners of this security issue.
Production LLM systems often rely on separate models for safety and other classification-heavy steps, increasing latency, VRAM footprint, and operational complexity. We instead reuse computation already paid for by the serving LLM: we train lightweight probes on its hidden states and predict labels in the same forward pass used for generation. We frame classification as representation selection over the full token-layer hidden-state tensor, rather than committing to a fixed token or fixed layer (e.g., first-token logits or final-layer pooling). To implement this, we introduce a two-stage aggregator that (i) summarizes tokens within each layer and (ii) aggregates across layer summaries to form a single representation for classification. We instantiate this template with direct pooling, a 100K-parameter scoring-attention gate, and a downcast multi-head self-attention (MHA) probe with up to 35M trainable parameters. Across safety and sentiment benchmarks our probes improve over logit-only reuse (e.g., MULI) and are competitive with substantially larger task-specific baselines, while preserving near-serving latency and avoiding the VRAM and latency costs of a separate guard-model pipeline.
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
Existing image emotion editing methods struggle to disentangle emotional cues from latent content representations, often yielding weak emotional expression and distorted visual structures. To bridge this gap, we propose EmoKGEdit, a novel training-free framework for precise and structure-preserving image emotion editing. Specifically, we construct a Multimodal Sentiment Association Knowledge Graph (MSA-KG) to disentangle the intricate relationships among objects, scenes, attributes, visual clues and emotion. MSA-KG explicitly encode the causal chain among object-attribute-emotion, and as external knowledge to support chain of thought reasoning, guiding the multimodal large model to infer plausible emotion-related visual cues and generate coherent instructions. In addition, based on MSA-KG, we design a disentangled structure-emotion editing module that explicitly separates emotional attributes from layout features within the latent space, which ensures that the target emotion is effectively injected while strictly maintaining visual spatial coherence. Extensive experiments demonstrate that EmoKGEdit achieves excellent performance in both emotion fidelity and content preservation, and outperforms the state-of-the-art methods.
Customer reviews contain rich signals about product weaknesses and unmet user needs, yet existing analytic methods rarely move beyond descriptive tasks such as sentiment analysis or aspect extraction. While large language models (LLMs) can generate free-form suggestions, their outputs often lack accuracy and depth of reasoning. In this paper, we present a multi-agent, LLM-based framework for prescriptive decision support, which transforms large scale review corpora into actionable business advice. The framework integrates four components: clustering to select representative reviews, generation of advices, iterative evaluation, and feasibility based ranking. This design couples corpus distillation with feedback driven advice refinement to produce outputs that are specific, actionable, and practical. Experiments across three service domains and multiple model families show that our framework consistently outperform single model baselines on actionability, specificity, and non-redundancy, with medium sized models approaching the performance of large model frameworks.
In federated learning, Transformer, as a popular architecture, faces critical challenges in defending against gradient attacks and improving model performance in both Computer Vision (CV) and Natural Language Processing (NLP) tasks. It has been revealed that the gradient of Position Embeddings (PEs) in Transformer contains sufficient information, which can be used to reconstruct the input data. To mitigate this issue, we introduce a Masked Jigsaw Puzzle (MJP) framework. MJP starts with random token shuffling to break the token order, and then a learnable \textit{unknown (unk)} position embedding is used to mask out the PEs of the shuffled tokens. In this manner, the local spatial information which is encoded in the position embeddings is disrupted, and the models are forced to learn feature representations that are less reliant on the local spatial information. Notably, with the careful use of MJP, we can not only improve models' robustness against gradient attacks, but also boost their performance in both vision and text application scenarios, such as classification for images (\textit{e.g.,} ImageNet-1K) and sentiment analysis for text (\textit{e.g.,} Yelp and Amazon). Experimental results suggest that MJP is a unified framework for different Transformer-based models in both vision and language tasks. Code is publicly available via https://github.com/ywxsuperstar/transformerattack