Integrating human expertise into machine learning systems often reduces the role of experts to labeling oracles, a paradigm that limits the amount of information exchanged and fails to capture the nuances of human judgment. We address this challenge by developing a human-in-the-loop framework to learn binary classifiers with rich query types, consisting of item ranking and exemplar selection. We first introduce probabilistic human response models for these rich queries motivated by the relationship experimentally observed between the perceived implicit score of an item and its distance to the unknown classifier. Using these models, we then design active learning algorithms that leverage the rich queries to increase the information gained per interaction. We provide theoretical bounds on sample complexity and develop a tractable and computationally efficient variational approximation. Through experiments with simulated annotators derived from crowdsourced word-sentiment and image-aesthetic datasets, we demonstrate significant reductions on sample complexity. We further extend active learning strategies to select queries that maximize information rate, explicitly balancing informational value against annotation cost. This algorithm in the word sentiment classification task reduces learning time by more than 57\% compared to traditional label-only active learning.
Modern deep neural networks achieve high predictive accuracy but remain poorly calibrated: their confidence scores do not reliably reflect the true probability of correctness. We propose a quantum-inspired classification head architecture that projects backbone features into a complex-valued Hilbert space and evolves them under a learned unitary transformation parameterised via the Cayley map. Through a controlled hybrid experimental design - training a single shared backbone and comparing lightweight interchangeable heads - we isolate the effect of complex-valued unitary representations on calibration. Our ablation study on CIFAR-10 reveals that the unitary magnitude head (complex features evolved under a Cayley unitary, read out via magnitude and softmax) achieves an Expected Calibration Error (ECE) of 0.0146, representing a 2.4x improvement over a standard softmax head (0.0355) and a 3.5x improvement over temperature scaling (0.0510). Surprisingly, replacing the softmax readout with a Born rule measurement layer - the quantum-mechanically motivated approach - degrades calibration to an ECE of 0.0819. On the CIFAR-10H human-uncertainty benchmark, the wave function head achieves the lowest KL-divergence (0.336) to human soft labels among all compared methods, indicating that complex-valued representations better capture the structure of human perceptual ambiguity. We provide theoretical analysis connecting norm-preserving unitary dynamics to calibration through feature-space geometry, report negative results on out-of-distribution detection and sentiment analysis to delineate the method's scope, and discuss practical implications for safety-critical applications. Code is publicly available.
Accurately measuring consumer emotions and evaluations from unstructured text remains a core challenge for marketing research and practice. This study introduces the Linguistic eXtractor (LX), a fine-tuned, large language model trained on consumer-authored text that also has been labeled with consumers' self-reported ratings of 16 consumption-related emotions and four evaluation constructs: trust, commitment, recommendation, and sentiment. LX consistently outperforms leading models, including GPT-4 Turbo, RoBERTa, and DeepSeek, achieving 81% macro-F1 accuracy on open-ended survey responses and greater than 95% accuracy on third-party-annotated Amazon and Yelp reviews. An application of LX to online retail data, using seemingly unrelated regression, affirms that review-expressed emotions predict product ratings, which in turn predict purchase behavior. Most emotional effects are mediated by product ratings, though some emotions, such as discontent and peacefulness, influence purchase directly, indicating that emotional tone provides meaningful signals beyond star ratings. To support its use, a no-code, cost-free, LX web application is available, enabling scalable analyses of consumer-authored text. In establishing a new methodological foundation for consumer perception measurement, this research demonstrates new methods for leveraging large language models to advance marketing research and practice, thereby achieving validated detection of marketing constructs from consumer data.
This paper introduces Perspectives, an interactive extension of the Discourse Analysis Tool Suite designed to empower Digital Humanities (DH) scholars to explore and organize large, unstructured document collections. Perspectives implements a flexible, aspect-focused document clustering pipeline with human-in-the-loop refinement capabilities. We showcase how this process can be initially steered by defining analytical lenses through document rewriting prompts and instruction-based embeddings, and further aligned with user intent through tools for refining clusters and mechanisms for fine-tuning the embedding model. The demonstration highlights a typical workflow, illustrating how DH researchers can leverage Perspectives's interactive document map to uncover topics, sentiments, or other relevant categories, thereby gaining insights and preparing their data for subsequent in-depth analysis.
Large language models (LLMs) show promise for healthcare question answering, but clinical use is limited by weak verification, insufficient evidence grounding, and unreliable confidence signalling. We propose a multi-agent medical QA framework that combines complementary LLMs with evidence retrieval, uncertainty estimation, and bias checks to improve answer reliability. Our approach has two phases. First, we fine-tune three representative LLM families (GPT, LLaMA, and DeepSeek R1) on MedQuAD-derived medical QA data (20k+ question-answer pairs across multiple NIH domains) and benchmark generation quality. DeepSeek R1 achieves the strongest scores (ROUGE-1 0.536 +- 0.04; ROUGE-2 0.226 +-0.03; BLEU 0.098 -+ 0.018) and substantially outperforms the specialised biomedical baseline BioGPT in zero-shot evaluation. Second, we implement a modular multi-agent pipeline in which a Clinical Reasoning agent (fine-tuned LLaMA) produces structured explanations, an Evidence Retrieval agent queries PubMed to ground responses in recent literature, and a Refinement agent (DeepSeek R1) improves clarity and factual consistency; an optional human validation path is triggered for high-risk or high-uncertainty cases. Safety mechanisms include Monte Carlo dropout and perplexity-based uncertainty scoring, plus lexical and sentiment-based bias detection supported by LIME/SHAP-based analyses. In evaluation, the full system achieves 87% accuracy with relevance around 0.80, and evidence augmentation reduces uncertainty (perplexity 4.13) compared to base responses, with mean end-to-end latency of 36.5 seconds under the reported configuration. Overall, the results indicate that agent specialisation and verification layers can mitigate key single-model limitations and provide a practical, extensible design for evidence-based and bias-aware medical AI.
Conditional Value-at-Risk (CoVaR) quantifies systemic financial risk by measuring the loss quantile of one asset, conditional on another asset experiencing distress. We develop a Transformer-based methodology that integrates financial news articles directly with market data to improve CoVaR estimates. Unlike approaches that use predefined sentiment scores, our method incorporates raw text embeddings generated by a large language model (LLM). We prove explicit error bounds for our Transformer CoVaR estimator, showing that accurate CoVaR learning is possible even with small datasets. Using U.S. market returns and Reuters news items from 2006--2013, our out-of-sample results show that textual information impacts the CoVaR forecasts. With better predictive performance, we identify a pronounced negative dip during market stress periods across several equity assets when comparing the Transformer-based CoVaR to both the CoVaR without text and the CoVaR using traditional sentiment measures. Our results show that textual data can be used to effectively model systemic risk without requiring prohibitively large data sets.
The distinction between genuine grassroots activism and automated influence operations is collapsing. While policy debates focus on bot farms, a distinct threat to democracy is emerging via partisan coordination apps and artificial intelligence-what we term 'cyborg propaganda.' This architecture combines large numbers of verified humans with adaptive algorithmic automation, enabling a closed-loop system. AI tools monitor online sentiment to optimize directives and generate personalized content for users to post online. Cyborg propaganda thereby exploits a critical legal shield: by relying on verified citizens to ratify and disseminate messages, these campaigns operate in a regulatory gray zone, evading liability frameworks designed for automated botnets. We explore the collective action paradox of this technology: does it democratize power by 'unionizing' influence (pooling the reach of dispersed citizens to overcome the algorithmic invisibility of isolated voices), or does it reduce citizens to 'cognitive proxies' of a central directive? We argue that cyborg propaganda fundamentally alters the digital public square, shifting political discourse from a democratic contest of individual ideas to a battle of algorithmic campaigns. We outline a research agenda to distinguish organic from coordinated information diffusion and propose governance frameworks to address the regulatory challenges of AI-assisted collective expression.
This study advances aspect-based sentiment analysis (ABSA) for Persian-language user reviews in the tourism domain, addressing challenges of low-resource languages. We propose a hybrid BERT-based model with Top-K routing and auxiliary losses to mitigate routing collapse and improve efficiency. The pipeline includes: (1) overall sentiment classification using BERT on 9,558 labeled reviews, (2) multi-label aspect extraction for six tourism-related aspects (host, price, location, amenities, cleanliness, connectivity), and (3) integrated ABSA with dynamic routing. The dataset consists of 58,473 preprocessed reviews from the Iranian accommodation platform Jabama, manually annotated for aspects and sentiments. The proposed model achieves a weighted F1-score of 90.6% for ABSA, outperforming baseline BERT (89.25%) and a standard hybrid approach (85.7%). Key efficiency gains include a 39% reduction in GPU power consumption compared to dense BERT, supporting sustainable AI deployment in alignment with UN SDGs 9 and 12. Analysis reveals high mention rates for cleanliness and amenities as critical aspects. This is the first ABSA study focused on Persian tourism reviews, and we release the annotated dataset to facilitate future multilingual NLP research in tourism.
This research explores how human-defined goals influence the behavior of Large Language Models (LLMs) through purpose-conditioned cognition. Using financial prediction tasks, we show that revealing the downstream use (e.g., predicting stock returns or earnings) of LLM outputs leads the LLM to generate biased sentiment and competition measures, even though these measures are intended to be downstream task-independent. Goal-aware prompting shifts intermediate measures toward the disclosed downstream objective. This purpose leakage improves performance before the LLM's knowledge cutoff, but with no advantage post-cutoff. AI bias due to "seeing the goal" is not an algorithmic flaw, but stems from human accountability in research design to ensure the statistical validity and reliability of AI-generated measurements.
Modern alignment pipelines are increasingly replacing expensive human preference labels with evaluations from large language models (LLM-as-Judge). However, AI labels can be systematically biased compared to high-quality human feedback datasets. In this paper, we develop two debiased alignment methods within a general framework that accommodates heterogeneous prompt-response distributions and external human feedback sources. Debiased Direct Preference Optimization (DDPO) augments standard DPO with a residual-based correction and density-ratio reweighting to mitigate systematic bias, while retaining DPO's computational efficiency. Debiased Identity Preference Optimization (DIPO) directly estimates human preference probabilities without imposing a parametric reward model. We provide theoretical guarantees for both methods: DDPO offers a practical and computationally efficient solution for large-scale alignment, whereas DIPO serves as a robust, statistically optimal alternative that attains the semiparametric efficiency bound. Empirical studies on sentiment generation, summarization, and single-turn dialogue demonstrate that the proposed methods substantially improve alignment efficiency and recover performance close to that of an oracle trained on fully human-labeled data.