Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis

May 20, 2020
Hao Tian, Can Gao, Xinyan Xiao, Hao Liu, Bolei He, Hua Wu, Haifeng Wang, Feng Wu

Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at

* Accepted by ACL2020 

  Access Paper or Ask Questions

A Multi-sentiment-resource Enhanced Attention Network for Sentiment Classification

Jul 13, 2018
Zeyang Lei, Yujiu Yang, Min Yang, Yi Liu

Deep learning approaches for sentiment classification do not fully exploit sentiment linguistic knowledge. In this paper, we propose a Multi-sentiment-resource Enhanced Attention Network (MEAN) to alleviate the problem by integrating three kinds of sentiment linguistic knowledge (e.g., sentiment lexicon, negation words, intensity words) into the deep neural network via attention mechanisms. By using various types of sentiment resources, MEAN utilizes sentiment-relevant information from different representation subspaces, which makes it more effective to capture the overall semantics of the sentiment, negation and intensity words for sentiment prediction. The experimental results demonstrate that MEAN has robust superiority over strong competitors.

  Access Paper or Ask Questions

Hunt Protagonist of Sentiment: Sentiment Analysis via Capsule Network with Sentiment-Aspect Reconstruction

Dec 23, 2019
Chi Xu, Hao Feng, Xiang Ao

Aspect-term level sentiment analysis (ATSA) is a fine-grained task in sentiment classification. It aims at extracting and summarizing the sentiment polarity towards a given aspect phrase from a sentence. Most existing studies combined various neural network models with a delicately carved attention mechanism to generate refined representations of sentences for better predictions. However, they were inadequate to capture correlations between aspects and sentiments. Moreover, the annotated aspect term might be unavailable in real-world scenarios which may challenge the existing methods to give correct forecasting. In this paper, we propose a capsule network based model named CAPSAR (CAPsule network with Sentiment-Aspect Reconstruction) to improve aspect-term level sentiment analysis. CAPSAR adopts a hierarchical structure of capsules and learns interactive patterns between aspects and sentiments through packaged sentiment-aspect reconstruction. Capsules in CAPSAR are capable of communicating with other capsules through a sharing-weight routing algorithm. Experiments on three ATSA benchmarks demonstrate the superiority of our model, and CAPSAR can detect the potential aspect terms from sentences by de-capsulizing the vectors in capsules when aspect terms are unknown.

* 10pages, 3figures 

  Access Paper or Ask Questions

Learning Sentiment Memories for Sentiment Modification without Parallel Data

Aug 22, 2018
Yi Zhang, Jingjing Xu, Pengcheng Yang, Xu Sun

The task of sentiment modification requires reversing the sentiment of the input and preserving the sentiment-independent content. However, aligned sentences with the same content but different sentiments are usually unavailable. Due to the lack of such parallel data, it is hard to extract sentiment independent content and reverse the sentiment in an unsupervised way. Previous work usually can not reconcile sentiment transformation and content preservation. In this paper, motivated by the fact the non-emotional context (e.g., "staff") provides strong cues for the occurrence of emotional words (e.g., "friendly"), we propose a novel method that automatically extracts appropriate sentiment information from learned sentiment memories according to specific context. Experiments show that our method substantially improves the content preservation degree and achieves the state-of-the-art performance.

* Accepted by EMNLP 2018 

  Access Paper or Ask Questions

SlangSD: Building and Using a Sentiment Dictionary of Slang Words for Short-Text Sentiment Classification

Aug 17, 2016
Liang Wu, Fred Morstatter, Huan Liu

Sentiment in social media is increasingly considered as an important resource for customer segmentation, market understanding, and tackling other socio-economic issues. However, sentiment in social media is difficult to measure since user-generated content is usually short and informal. Although many traditional sentiment analysis methods have been proposed, identifying slang sentiment words remains untackled. One of the reasons is that slang sentiment words are not available in existing dictionaries or sentiment lexicons. To this end, we propose to build the first sentiment dictionary of slang words to aid sentiment analysis of social media content. It is laborious and time-consuming to collect and label the sentiment polarity of a comprehensive list of slang words. We present an approach to leverage web resources to construct an extensive Slang Sentiment word Dictionary (SlangSD) that is easy to maintain and extend. SlangSD is publicly available for research purposes. We empirically show the advantages of using SlangSD, the newly-built slang sentiment word dictionary for sentiment classification, and provide examples demonstrating its ease of use with an existing sentiment system.

* 15 pages, 2 figures 

  Access Paper or Ask Questions

Improving Twitter Sentiment Classification via Multi-Level Sentiment-Enriched Word Embeddings

Nov 01, 2016
Shufeng Xiong

Most of existing work learn sentiment-specific word representation for improving Twitter sentiment classification, which encoded both n-gram and distant supervised tweet sentiment information in learning process. They assume all words within a tweet have the same sentiment polarity as the whole tweet, which ignores the word its own sentiment polarity. To address this problem, we propose to learn sentiment-specific word embedding by exploiting both lexicon resource and distant supervised information. We develop a multi-level sentiment-enriched word embedding learning method, which uses parallel asymmetric neural network to model n-gram, word level sentiment and tweet level sentiment in learning process. Experiments on standard benchmarks show our approach outperforms state-of-the-art methods.

  Access Paper or Ask Questions

Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training

Nov 03, 2021
Zhengyan Li, Yicheng Zou, Chong Zhang, Qi Zhang, Zhongyu Wei

Aspect-based sentiment analysis aims to identify the sentiment polarity of a specific aspect in product reviews. We notice that about 30% of reviews do not contain obvious opinion words, but still convey clear human-aware sentiment orientation, which is known as implicit sentiment. However, recent neural network-based approaches paid little attention to implicit sentiment entailed in the reviews. To overcome this issue, we adopt Supervised Contrastive Pre-training on large-scale sentiment-annotated corpora retrieved from in-domain language resources. By aligning the representation of implicit sentiment expressions to those with the same sentiment label, the pre-training process leads to better capture of both implicit and explicit sentiment orientation towards aspects in reviews. Experimental results show that our method achieves state-of-the-art performance on SemEval2014 benchmarks, and comprehensive analysis validates its effectiveness on learning implicit sentiment.

* Accepted as a long paper in the main conference of EMNLP 2021 

  Access Paper or Ask Questions

From Sentiment Annotations to Sentiment Prediction through Discourse Augmentation

Nov 05, 2020
Patrick Huber, Giuseppe Carenini

Sentiment analysis, especially for long documents, plausibly requires methods capturing complex linguistics structures. To accommodate this, we propose a novel framework to exploit task-related discourse for the task of sentiment analysis. More specifically, we are combining the large-scale, sentiment-dependent MEGA-DT treebank with a novel neural architecture for sentiment prediction, based on a hybrid TreeLSTM hierarchical attention model. Experiments show that our framework using sentiment-related discourse augmentations for sentiment prediction enhances the overall performance for long documents, even beyond previous approaches using well-established discourse parsers trained on human annotated data. We show that a simple ensemble approach can further enhance performance by selectively using discourse, depending on the document length.

* In Proceedings of the 28 International Conference on Computational Linguistics (COLING). 10 pages 

  Access Paper or Ask Questions

When Saliency Meets Sentiment: Understanding How Image Content Invokes Emotion and Sentiment

Nov 14, 2016
Honglin Zheng, Tianlang Chen, Jiebo Luo

Sentiment analysis is crucial for extracting social signals from social media content. Due to the prevalence of images in social media, image sentiment analysis is receiving increasing attention in recent years. However, most existing systems are black-boxes that do not provide insight on how image content invokes sentiment and emotion in the viewers. Psychological studies have confirmed that salient objects in an image often invoke emotions. In this work, we investigate more fine-grained and more comprehensive interaction between visual saliency and visual sentiment. In particular, we partition images in several primary scene-type dimensions, including: open-closed, natural-manmade, indoor-outdoor, and face-noface. Using state of the art saliency detection algorithm and sentiment classification algorithm, we examine how the sentiment of the salient region(s) in an image relates to the overall sentiment of the image. The experiments on a representative image emotion dataset have shown interesting correlation between saliency and sentiment in different scene types and in turn shed light on the mechanism of visual sentiment evocation.

* 7 pages, 5 figures, submitted to AAAI-17 

  Access Paper or Ask Questions