Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Implementing Neural Network-Based Equalizers in a Coherent Optical Transmission System Using Field-Programmable Gate Arrays


Dec 09, 2022
Pedro J. Freire, Sasipim Srivallapanondh, Michael Anderson, Bernhard Spinnler, Thomas Bex, Tobias A. Eriksson, Antonio Napoli, Wolfgang Schairer, Nelson Costa, Michaela Blott, Sergei K. Turitsyn, Jaroslaw E. Prilepsky

Add code

* Invited paper at Journal of Lightwave Technology - IEEE 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

LL-GNN: Low Latency Graph Neural Networks on FPGAs for Particle Detectors


Oct 11, 2022
Zhiqiang Que, Hongxiang Fan, Marcus Loo, Michaela Blott, Maurizio Pierini, Alexander D Tapper, Wayne Luk

Add code

* 13 pages and 12 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards FPGA Implementation of Neural Network-Based Nonlinearity Mitigation Equalizers in Coherent Optical Transmission Systems


Jun 24, 2022
Pedro J. Freire, Michael Anderson, Bernhard Spinnler, Thomas Bex, Jaroslaw E. Prilepsky, Tobias A. Eriksson, Nelson Costa, Wolfgang Schairer, Michaela Blott, Antonio Napoli, Sergei K. Turitsyn

Add code

* Accepted Oral in the European Conference on Optical Communication (ECOC) 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark


Jun 23, 2022
Hendrik Borras, Giuseppe Di Guglielmo, Javier Duarte, Nicolò Ghielmetti, Ben Hawks, Scott Hauck, Shih-Chieh Hsu, Ryan Kastner, Jason Liang, Andres Meza, Jules Muhizi, Tai Nguyen, Rushil Roy, Nhan Tran, Yaman Umuroglu, Olivia Weng, Aidan Yokuda, Michaela Blott

Add code

* 15 pages, 7 figures, Contribution to 3rd Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware (MLBench) at 5th Conference on Machine Learning and Systems (MLSys) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

QONNX: Representing Arbitrary-Precision Quantized Neural Networks


Jun 17, 2022
Alessandro Pappalardo, Yaman Umuroglu, Michaela Blott, Jovan Mitrevski, Ben Hawks, Nhan Tran, Vladimir Loncar, Sioni Summers, Hendrik Borras, Jules Muhizi, Matthew Trahms, Shih-Chieh Hsu, Scott Hauck, Javier Duarte

Add code

* 9 pages, 5 figures, Contribution to 4th Workshop on Accelerated Machine Learning (AccML) at HiPEAC 2022 Conference 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network Accelerators


Feb 04, 2022
Lois Orosa, Skanda Koppula, Yaman Umuroglu, Konstantinos Kanellopoulos, Juan Gomez-Luna, Michaela Blott, Kees Vissers, Onur Mutlu

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Applications and Techniques for Fast Machine Learning in Science


Oct 25, 2021
Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, Ashish Sharma, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng

Add code

* 66 pages, 13 figures, 5 tables 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

FAT: Training Neural Networks for Reliable Inference Under Hardware Faults


Nov 11, 2020
Ussama Zahid, Giulio Gambardella, Nicholas J. Fraser, Michaela Blott, Kees Vissers

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

LogicNets: Co-Designed Neural Networks and Circuits for Extreme-Throughput Applications


Apr 06, 2020
Yaman Umuroglu, Yash Akhauri, Nicholas J. Fraser, Michaela Blott

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
>>