Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

Learning Human-Object Interaction Detection using Interaction Points

Mar 31, 2020
Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz Khan, Xiangyu Zhang, Jian Sun

Understanding interactions between humans and objects is one of the fundamental problems in visual classification and an essential step towards detailed scene understanding. Human-object interaction (HOI) detection strives to localize both the human and an object as well as the identification of complex interactions between them. Most existing HOI detection approaches are instance-centric where interactions between all possible human-object pairs are predicted based on appearance features and coarse spatial information. We argue that appearance features alone are insufficient to capture complex human-object interactions. In this paper, we therefore propose a novel fully-convolutional approach that directly detects the interactions between human-object pairs. Our network predicts interaction points, which directly localize and classify the inter-action. Paired with the densely predicted interaction vectors, the interactions are associated with human and object detections to obtain final predictions. To the best of our knowledge, we are the first to propose an approach where HOI detection is posed as a keypoint detection and grouping problem. Experiments are performed on two popular benchmarks: V-COCO and HICO-DET. Our approach sets a new state-of-the-art on both datasets. Code is available at https://github.com/vaesl/IP-Net.

* Accepted to CVPR 2020 
  
Access Paper or Ask Questions

Open-set 3D Object Detection

Dec 02, 2021
Jun Cen, Peng Yun, Junhao Cai, Michael Yu Wang, Ming Liu

3D object detection has been wildly studied in recent years, especially for robot perception systems. However, existing 3D object detection is under a closed-set condition, meaning that the network can only output boxes of trained classes. Unfortunately, this closed-set condition is not robust enough for practical use, as it will identify unknown objects as known by mistake. Therefore, in this paper, we propose an open-set 3D object detector, which aims to (1) identify known objects, like the closed-set detection, and (2) identify unknown objects and give their accurate bounding boxes. Specifically, we divide the open-set 3D object detection problem into two steps: (1) finding out the regions containing the unknown objects with high probability and (2) enclosing the points of these regions with proper bounding boxes. The first step is solved by the finding that unknown objects are often classified as known objects with low confidence, and we show that the Euclidean distance sum based on metric learning is a better confidence score than the naive softmax probability to differentiate unknown objects from known objects. On this basis, unsupervised clustering is used to refine the bounding boxes of unknown objects. The proposed method combining metric learning and unsupervised clustering is called the MLUC network. Our experiments show that our MLUC network achieves state-of-the-art performance and can identify both known and unknown objects as expected.

* Received by 3DV 2021 
  
Access Paper or Ask Questions

Small Object Detection for Near Real-Time Egocentric Perception in a Manual Assembly Scenario

Jun 11, 2021
Hooman Tavakoli, Snehal Walunj, Parsha Pahlevannejad, Christiane Plociennik, Martin Ruskowski

Detecting small objects in video streams of head-worn augmented reality devices in near real-time is a huge challenge: training data is typically scarce, the input video stream can be of limited quality, and small objects are notoriously hard to detect. In industrial scenarios, however, it is often possible to leverage contextual knowledge for the detection of small objects. Furthermore, CAD data of objects are typically available and can be used to generate synthetic training data. We describe a near real-time small object detection pipeline for egocentric perception in a manual assembly scenario: We generate a training data set based on CAD data and realistic backgrounds in Unity. We then train a YOLOv4 model for a two-stage detection process: First, the context is recognized, then the small object of interest is detected. We evaluate our pipeline on the augmented reality device Microsoft Hololens 2.

* Accepted for presentation at [email protected] workshop 
  
Access Paper or Ask Questions

Is Object Detection Necessary for Human-Object Interaction Recognition?

Jul 27, 2021
Ying Jin, Yinpeng Chen, Lijuan Wang, Jianfeng Wang, Pei Yu, Zicheng Liu, Jenq-Neng Hwang

This paper revisits human-object interaction (HOI) recognition at image level without using supervisions of object location and human pose. We name it detection-free HOI recognition, in contrast to the existing detection-supervised approaches which rely on object and keypoint detections to achieve state of the art. With our method, not only the detection supervision is evitable, but superior performance can be achieved by properly using image-text pre-training (such as CLIP) and the proposed Log-Sum-Exp Sign (LSE-Sign) loss function. Specifically, using text embeddings of class labels to initialize the linear classifier is essential for leveraging the CLIP pre-trained image encoder. In addition, LSE-Sign loss facilitates learning from multiple labels on an imbalanced dataset by normalizing gradients over all classes in a softmax format. Surprisingly, our detection-free solution achieves 60.5 mAP on the HICO dataset, outperforming the detection-supervised state of the art by 13.4 mAP

  
Access Paper or Ask Questions

Orientation Aware Object Detection with Application to Firearms

Apr 22, 2019
Javed Iqbal, Muhammad Akhtar Munir, Arif Mahmood, Afsheen Rafaqat Ali, Mohsen Ali

Automatic detection of firearms is important for enhancing security and safety of people, however, it is a challenging task owing to the wide variations in shape, size and appearance of firearms. To handle these challenges we propose an Orientation Aware Object Detector (OAOD) which has achieved improved firearm detection and localization performance. The proposed detector has two phases. In the Phase-1 it predicts orientation of the object which is used to rotate the object proposal. Maximum area rectangles are cropped from the rotated object proposals which are again classified and localized in the Phase-2 of the algorithm. The oriented object proposals are mapped back to the original coordinates resulting in oriented bounding boxes which localize the weapons much better than the axis aligned bounding boxes. Being orientation aware, our non-maximum suppression is able to avoid multiple detection of the same object and it can better resolve objects which lie in close proximity to each other. This two phase system leverages OAOD to predict object oriented bounding boxes while being trained only on the axis aligned boxes in the ground-truth. In order to train object detectors for firearm detection, a dataset consisting of around eleven thousand firearm images is collected from the internet and manually annotated. The proposed ITU Firearm (ITUF) dataset contains wide range of guns and rifles. The OAOD algorithm is evaluated on the ITUF dataset and compared with current state of the art object detectors. Our experiments demonstrate the excellent performance of the proposed detector for the task of firearm detection.

* Under review in IEEE Transactions 
  
Access Paper or Ask Questions

Motion Vector Extrapolation for Video Object Detection

Apr 18, 2021
Julian True, Naimul Khan

Despite the continued successes of computationally efficient deep neural network architectures for video object detection, performance continually arrives at the great trilemma of speed versus accuracy versus computational resources (pick two). Current attempts to exploit temporal information in video data to overcome this trilemma are bottlenecked by the state-of-the-art in object detection models. We present, a technique which performs video object detection through the use of off-the-shelf object detectors alongside existing optical flow based motion estimation techniques in parallel. Through a set of experiments on the benchmark MOT20 dataset, we demonstrate that our approach significantly reduces the baseline latency of any given object detector without sacrificing any accuracy. Further latency reduction, up to 25x lower than the original latency, can be achieved with minimal accuracy loss. MOVEX enables low latency video object detection on common CPU based systems, thus allowing for high performance video object detection beyond the domain of GPU computing. The code is available at https://github.com/juliantrue/movex.

  
Access Paper or Ask Questions

Energy Drain of the Object Detection Processing Pipeline for Mobile Devices: Analysis and Implications

Nov 26, 2020
Haoxin Wang, BaekGyu Kim, Jiang Xie, Zhu Han

Applying deep learning to object detection provides the capability to accurately detect and classify complex objects in the real world. However, currently, few mobile applications use deep learning because such technology is computation-intensive and energy-consuming. This paper, to the best of our knowledge, presents the first detailed experimental study of a mobile augmented reality (AR) client's energy consumption and the detection latency of executing Convolutional Neural Networks (CNN) based object detection, either locally on the smartphone or remotely on an edge server. In order to accurately measure the energy consumption on the smartphone and obtain the breakdown of energy consumed by each phase of the object detection processing pipeline, we propose a new measurement strategy. Our detailed measurements refine the energy analysis of mobile AR clients and reveal several interesting perspectives regarding the energy consumption of executing CNN-based object detection. Furthermore, several insights and research opportunities are proposed based on our experimental results. These findings from our experimental study will guide the design of energy-efficient processing pipeline of CNN-based object detection.

* This is a personal copy of the authors. Not for redistribution. The final version of this paper was accepted by IEEE Transactions on Green Communications and Networking 
  
Access Paper or Ask Questions

Deep Learning for UAV-based Object Detection and Tracking: A Survey

Oct 25, 2021
Xin Wu, Wei Li, Danfeng Hong, Ran Tao, Qian Du

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

* IEEE Geoscience and Remote Sensing Magazine,2021 
  
Access Paper or Ask Questions

GAN-Knowledge Distillation for one-stage Object Detection

Jul 04, 2019
Wei Hong, Jin ke Yu Fan Zong

Convolutional neural networks have a significant improvement in the accuracy of Object detection. As convolutional neural networks become deeper, the accuracy of detection is also obviously improved, and more floating-point calculations are needed. Many researchers use the knowledge distillation method to improve the accuracy of student networks by transferring knowledge from a deeper and larger teachers network to a small student network, in object detection. Most methods of knowledge distillation need to designed complex cost functions and they are aimed at the two-stage object detection algorithm. This paper proposes a clean and effective knowledge distillation method for the one-stage object detection. The feature maps generated by teacher network and student network are used as true samples and fake samples respectively, and generate adversarial training for both to improve the performance of the student network in one-stage object detection.

  
Access Paper or Ask Questions
<<
12
13
14
15
16
17
18
19
20
21
22
23
24
>>