Abstract:Public health experts need scalable approaches to monitor large volumes of health data (e.g., cases, hospitalizations, deaths) for outbreaks or data quality issues. Traditional alert-based monitoring systems struggle with modern public health data monitoring systems for several reasons, including that alerting thresholds need to be constantly reset and the data volumes may cause application lag. Instead, we propose a ranking-based monitoring paradigm that leverages new AI anomaly detection methods. Through a multi-year interdisciplinary collaboration, the resulting system has been deployed at a national organization to monitor up to 5,000,000 data points daily. A three-month longitudinal deployed evaluation revealed a significant improvement in monitoring objectives, with a 54x increase in reviewer speed efficiency compared to traditional alert-based methods. This work highlights the potential of human-centered AI to transform public health decision-making.
Abstract:Disease control experts inspect public health data streams daily for outliers worth investigating, like those corresponding to data quality issues or disease outbreaks. However, they can only examine a few of the thousands of maximally-tied outliers returned by univariate outlier detection methods applied to large-scale public health data streams. To help experts distinguish the most important outliers from these thousands of tied outliers, we propose a new task for algorithms to rank the outputs of any univariate method applied to each of many streams. Our novel algorithm for this task, which leverages hierarchical networks and extreme value analysis, performed the best across traditional outlier detection metrics in a human-expert evaluation using public health data streams. Most importantly, experts have used our open-source Python implementation since April 2023 and report identifying outliers worth investigating 9.1x faster than their prior baseline. Other organizations can readily adapt this implementation to create rankings from the outputs of their tailored univariate methods across large-scale streams.