Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Image To Image Translation": models, code, and papers

ZstGAN: An Adversarial Approach for Unsupervised Zero-Shot Image-to-Image Translation

Jun 01, 2019
Jianxin Lin, Yingce Xia, Sen Liu, Tao Qin, Zhibo Chen

Image-to-image translation models have shown remarkable ability on transferring images among different domains. Most of existing work follows the setting that the source domain and target domain keep the same at training and inference phases, which cannot be generalized to the scenarios for translating an image from an unseen domain to an another unseen domain. In this work, we propose the Unsupervised Zero-Shot Image-to-image Translation (UZSIT) problem, which aims to learn a model that can transfer translation knowledge from seen domains to unseen domains. Accordingly, we propose a framework called ZstGAN: By introducing an adversarial training scheme, ZstGAN learns to model each domain with domain-specific feature distribution that is semantically consistent on vision and attribute modalities. Then the domain-invariant features are disentangled with an shared encoder for image generation. We carry out extensive experiments on CUB and FLO datasets, and the results demonstrate the effectiveness of proposed method on UZSIT task. Moreover, ZstGAN shows significant accuracy improvements over state-of-the-art zero-shot learning methods on CUB and FLO.

* 10 pages, 7 figures 

Neural Style Transfer and Unpaired Image-to-Image Translation to deal with the Domain Shift Problem on Spheroid Segmentation

Dec 16, 2021
Manuel GarcĂ­a-DomĂ­nguez, CĂ©sar DomĂ­nguez, JĂłnathan Heras, Eloy Mata, Vico Pascual

Background and objectives. Domain shift is a generalisation problem of machine learning models that occurs when the data distribution of the training set is different to the data distribution encountered by the model when it is deployed. This is common in the context of biomedical image segmentation due to the variance of experimental conditions, equipment, and capturing settings. In this work, we address this challenge by studying both neural style transfer algorithms and unpaired image-to-image translation methods in the context of the segmentation of tumour spheroids. Methods. We have illustrated the domain shift problem in the context of spheroid segmentation with 4 deep learning segmentation models that achieved an IoU over 97% when tested with images following the training distribution, but whose performance decreased up to an 84\% when applied to images captured under different conditions. In order to deal with this problem, we have explored 3 style transfer algorithms (NST, deep image analogy, and STROTSS), and 6 unpaired image-to-image translations algorithms (CycleGAN, DualGAN, ForkGAN, GANILLA, CUT, and FastCUT). These algorithms have been integrated into a high-level API that facilitates their application to other contexts where the domain-shift problem occurs. Results. We have considerably improved the performance of the 4 segmentation models when applied to images captured under different conditions by using both style transfer and image-to-image translation algorithms. In particular, there are 2 style transfer algorithms (NST and deep image analogy) and 1 unpaired image-to-image translations algorithm (CycleGAN) that improve the IoU of the models in a range from 0.24 to 76.07. Therefore, reaching a similar performance to the one obtained with the models are applied to images following the training distribution.


Mix and match networks: multi-domain alignment for unpaired image-to-image translation

Mar 08, 2019
Yaxing Wang, Luis Herranz, Joost van de Weijer

This paper addresses the problem of inferring unseen cross-domain and cross-modal image-to-image translations between multiple domains and modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-segmentation training sets. We observe that certain part of the shared information between unseen domains might not be reachable, so we further propose a variant that leverages pseudo-pairs to exploit all shared information.

* overlap the previous version. arXiv admin note: text overlap with arXiv:1804.02199 

Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

Jul 06, 2021
Kai Ye, Yinru Ye, Minqiang Yang, Bin Hu

The main challenges of image-to-image (I2I) translation are to make the translated image realistic and retain as much information from the source domain as possible. To address this issue, we propose a novel architecture, termed as IEGAN, which removes the encoder of each network and introduces an encoder that is independent of other networks. Compared with previous models, it embodies three advantages of our model: Firstly, it is more directly and comprehensively to grasp image information since the encoder no longer receives loss from generator and discriminator. Secondly, the independent encoder allows each network to focus more on its own goal which makes the translated image more realistic. Thirdly, the reduction in the number of encoders performs more unified image representation. However, when the independent encoder applies two down-sampling blocks, it's hard to extract semantic information. To tackle this problem, we propose deep and shallow information space containing characteristic and semantic information, which can guide the model to translate high-quality images under the task with significant shape or texture change. We compare IEGAN with other previous models, and conduct researches on semantic information consistency and component ablation at the same time. These experiments show the superiority and effectiveness of our architecture. Our code is published on:


BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

Oct 05, 2020
Or Patashnik, Dov Danon, Hao Zhang, Daniel Cohen-Or

State-of-the-art image-to-image translation methods tend to struggle in an imbalanced domain setting, where one image domain lacks richness and diversity. We introduce a new unsupervised translation network, BalaGAN, specifically designed to tackle the domain imbalance problem. We leverage the latent modalities of the richer domain to turn the image-to-image translation problem, between two imbalanced domains, into a balanced, multi-class, and conditional translation problem, more resembling the style transfer setting. Specifically, we analyze the source domain and learn a decomposition of it into a set of latent modes or classes, without any supervision. This leaves us with a multitude of balanced cross-domain translation tasks, between all pairs of classes, including the target domain. During inference, the trained network takes as input a source image, as well as a reference or style image from one of the modes as a condition, and produces an image which resembles the source on the pixel-wise level, but shares the same mode as the reference. We show that employing modalities within the dataset improves the quality of the translated images, and that BalaGAN outperforms strong baselines of both unconditioned and style-transfer-based image-to-image translation methods, in terms of image quality and diversity.


Contrastive Learning for Unpaired Image-to-Image Translation

Aug 20, 2020
Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu

In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, using a framework based on contrastive learning. The method encourages two elements (corresponding patches) to map to a similar point in a learned feature space, relative to other elements (other patches) in the dataset, referred to as negatives. We explore several critical design choices for making contrastive learning effective in the image synthesis setting. Notably, we use a multilayer, patch-based approach, rather than operate on entire images. Furthermore, we draw negatives from within the input image itself, rather than from the rest of the dataset. We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time. In addition, our method can even be extended to the training setting where each "domain" is only a single image.

* ECCV 2020. Please visit for introduction videos and more. v3 contains typo fixes and citation update 

Image-to-image Translation as a Unique Source of Knowledge

Dec 09, 2021
Alejandro D. Mousist

Image-to-image (I2I) translation is an established way of translating data from one domain to another but the usability of the translated images in the target domain when working with such dissimilar domains as the SAR/optical satellite imagery ones and how much of the origin domain is translated to the target domain is still not clear enough. This article address this by performing translations of labelled datasets from the optical domain to the SAR domain with different I2I algorithms from the state-of-the-art, learning from transferred features in the destination domain and evaluating later how much from the original dataset was transferred. Added to this, stacking is proposed as a way of combining the knowledge learned from the different I2I translations and evaluated against single models.