Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Modern enterprise retrieval systems must handle short, underspecified queries such as ``foreign transaction fee refund'' and ``recent check status''. In these cases, semantic nuance and metadata matter but per-query large language model (LLM) re-ranking and manual labeling are costly. We present Metadata-Aware Cross-Model Alignment (MACA), which distills a calibrated metadata aware LLM re-ranker into a compact student retriever, avoiding online LLM calls. A metadata-aware prompt verifies the teacher's trustworthiness by checking consistency under permutations and robustness to paraphrases, then supplies listwise scores, hard negatives, and calibrated relevance margins. The student trains with MACA's MetaFusion objective, which combines a metadata conditioned ranking loss with a cross model margin loss so it learns to push the correct answer above semantically similar candidates with mismatched topic, sub-topic, or entity. On a proprietary consumer banking FAQ corpus and BankFAQs, the MACA teacher surpasses a MAFA baseline at Accuracy@1 by five points on the proprietary set and three points on BankFAQs. MACA students substantially outperform pretrained encoders; e.g., on the proprietary corpus MiniLM Accuracy@1 improves from 0.23 to 0.48, while keeping inference free of LLM calls and supporting retrieval-augmented generation.
Large language models (LLMs) have made rapid progress in formal theorem proving, yet current benchmarks under-measure the kind of abstraction and library-mediated reasoning that organizes modern mathematics. In parallel with FATE's emphasis on frontier algebra, we introduce LeanCat, a Lean benchmark for category-theoretic formalization -- a unifying language for mathematical structure and a core layer of modern proof engineering -- serving as a stress test of structural, interface-level reasoning. Part I: 1-Categories contains 100 fully formalized statement-level tasks, curated into topic families and three difficulty tiers via an LLM-assisted + human grading process. The best model solves 8.25% of tasks at pass@1 (32.50%/4.17%/0.00% by Easy/Medium/High) and 12.00% at pass@4 (50.00%/4.76%/0.00%). We also evaluate LeanBridge which use LeanExplore to search Mathlib, and observe consistent gains over single-model baselines. LeanCat is intended as a compact, reusable checkpoint for tracking both AI and human progress toward reliable, research-level formalization in Lean.
The capability of Unified Multimodal Models (UMMs) to apply world knowledge across diverse tasks remains a critical, unresolved challenge. Existing benchmarks fall short, offering only siloed, single-task evaluations with limited diagnostic power. To bridge this gap, we propose AEGIS (\emph{i.e.}, \textbf{A}ssessing \textbf{E}diting, \textbf{G}eneration, \textbf{I}nterpretation-Understanding for \textbf{S}uper-intelligence), a comprehensive multi-task benchmark covering visual understanding, generation, editing, and interleaved generation. AEGIS comprises 1,050 challenging, manually-annotated questions spanning 21 topics (including STEM, humanities, daily life, etc.) and 6 reasoning types. To concretely evaluate the performance of UMMs in world knowledge scope without ambiguous metrics, we further propose Deterministic Checklist-based Evaluation (DCE), a protocol that replaces ambiguous prompt-based scoring with atomic ``Y/N'' judgments, to enhance evaluation reliability. Our extensive experiments reveal that most UMMs exhibit severe world knowledge deficits and that performance degrades significantly with complex reasoning. Additionally, simple plug-in reasoning modules can partially mitigate these vulnerabilities, highlighting a promising direction for future research. These results highlight the importance of world-knowledge-based reasoning as a critical frontier for UMMs.
Rigorous crop counting is crucial for effective agricultural management and informed intervention strategies. However, in outdoor field environments, partial occlusions combined with inherent ambiguity in distinguishing clustered crops from individual viewpoints poses an immense challenge for image-based segmentation methods. To address these problems, we introduce a novel crop counting framework designed for exact enumeration via 3D instance segmentation. Our approach utilizes 2D images captured from multiple viewpoints and associates independent instance masks for neural radiance field (NeRF) view synthesis. We introduce crop visibility and mask consistency scores, which are incorporated alongside 3D information from a NeRF model. This results in an effective segmentation of crop instances in 3D and highly-accurate crop counts. Furthermore, our method eliminates the dependence on crop-specific parameter tuning. We validate our framework on three agricultural datasets consisting of cotton bolls, apples, and pears, and demonstrate consistent counting performance despite major variations in crop color, shape, and size. A comparative analysis against the state of the art highlights superior performance on crop counting tasks. Lastly, we contribute a cotton plant dataset to advance further research on this topic.
Machine Learning (ML) has been a foundational topic in artificial intelligence (AI), providing both theoretical groundwork and practical tools for its exciting advancements. From ResNet for visual recognition to Transformer for vision-language alignment, the AI models have achieved superior capability to humans. Furthermore, the scaling law has enabled AI to initially develop general intelligence, as demonstrated by Large Language Models (LLMs). To this stage, AI has had an enormous influence on society and yet still keeps shaping the future for humanity. However, distribution shift remains a persistent ``Achilles' heel'', fundamentally limiting the reliability and general usefulness of ML systems. Moreover, generalization under distribution shift would also cause trust issues for AIs. Motivated by these challenges, my research focuses on \textit{Trustworthy Machine Learning under Distribution Shifts}, with the goal of expanding AI's robustness, versatility, as well as its responsibility and reliability. We carefully study the three common distribution shifts into: (1) Perturbation Shift, (2) Domain Shift, and (3) Modality Shift. For all scenarios, we also rigorously investigate trustworthiness via three aspects: (1) Robustness, (2) Explainability, and (3) Adaptability. Based on these dimensions, we propose effective solutions and fundamental insights, meanwhile aiming to enhance the critical ML problems, such as efficiency, adaptability, and safety.
Theme detection is a fundamental task in user-centric dialogue systems, aiming to identify the latent topic of each utterance without relying on predefined schemas. Unlike intent induction, which operates within fixed label spaces, theme detection requires cross-dialogue consistency and alignment with personalized user preferences, posing significant challenges. Existing methods often struggle with sparse, short utterances for accurate topic representation and fail to capture user-level thematic preferences across dialogues. To address these challenges, we propose CATCH (Controllable Theme Detection with Contextualized Clustering and Hierarchical Generation), a unified framework that integrates three core components: (1) context-aware topic representation, which enriches utterance-level semantics using surrounding topic segments; (2) preference-guided topic clustering, which jointly models semantic proximity and personalized feedback to align themes across dialogue; and (3) a hierarchical theme generation mechanism designed to suppress noise and produce robust, coherent topic labels. Experiments on a multi-domain customer dialogue benchmark (DSTC-12) demonstrate the effectiveness of CATCH with 8B LLM in both theme clustering and topic generation quality.
Social scientists employ latent Dirichlet allocation (LDA) to find highly specific topics in large corpora, but they often struggle in this task because (1) LDA, in general, takes a significant amount of time to fit on large corpora; (2) unsupervised LDA fragments topics into sub-topics in short documents; (3) semi-supervised LDA fails to identify specific topics defined using seed words. To solve these problems, I have developed a new topic model called distributed asymmetric allocation (DAA) that integrates multiple algorithms for efficiently identifying sentences about important topics in large corpora. I evaluate the ability of DAA to identify politically important topics by fitting it to the transcripts of speeches at the United Nations General Assembly between 1991 and 2017. The results show that DAA can classify sentences significantly more accurately and quickly than LDA thanks to the new algorithms. More generally, the results demonstrate that it is important for social scientists to optimize Dirichlet priors of LDA to perform content analysis accurately.
Audiobook interpretations are attracting increasing attention, as they provide accessible and in-depth analyses of books that offer readers practical insights and intellectual inspiration. However, their manual creation process remains time-consuming and resource-intensive. To address this challenge, we propose AI4Reading, a multi-agent collaboration system leveraging large language models (LLMs) and speech synthesis technology to generate podcast, like audiobook interpretations. The system is designed to meet three key objectives: accurate content preservation, enhanced comprehensibility, and a logical narrative structure. To achieve these goals, we develop a framework composed of 11 specialized agents,including topic analysts, case analysts, editors, a narrator, and proofreaders that work in concert to explore themes, extract real world cases, refine content organization, and synthesize natural spoken language. By comparing expert interpretations with our system's output, the results show that although AI4Reading still has a gap in speech generation quality, the generated interpretative scripts are simpler and more accurate.
Cognitive diagnosis is an essential research topic in intelligent education, aimed at assessing the level of mastery of different skills by students. So far, many research works have used deep learning models to explore the complex interactions between students, questions, and skills. However, the performance of existing method is frequently limited by the long-tailed distribution and dynamic changes in the data. To address these challenges, we propose a meta-learning framework for cognitive diagnosis based on continual learning (MetaCD). This framework can alleviate the long-tailed problem by utilizing meta-learning to learn the optimal initialization state, enabling the model to achieve good accuracy on new tasks with only a small amount of data. In addition, we utilize a continual learning method named parameter protection mechanism to give MetaCD the ability to adapt to new skills or new tasks, in order to adapt to dynamic changes in data. MetaCD can not only improve the plasticity of our model on a single task, but also ensure the stability and generalization of the model on sequential tasks. Comprehensive experiments on five real-world datasets show that MetaCD outperforms other baselines in both accuracy and generalization.
One-to-one tutoring is widely considered the gold standard for personalized education, yet it remains prohibitively expensive to scale. To evaluate whether generative AI might help expand access to this resource, we conducted an exploratory randomized controlled trial (RCT) with $N = 165$ students across five UK secondary schools. We integrated LearnLM -- a generative AI model fine-tuned for pedagogy -- into chat-based tutoring sessions on the Eedi mathematics platform. In the RCT, expert tutors directly supervised LearnLM, with the remit to revise each message it drafted until they would be satisfied sending it themselves. LearnLM proved to be a reliable source of pedagogical instruction, with supervising tutors approving 76.4% of its drafted messages making zero or minimal edits (i.e., changing only one or two characters). This translated into effective tutoring support: students guided by LearnLM performed at least as well as students chatting with human tutors on each learning outcome we measured. In fact, students who received support from LearnLM were 5.5 percentage points more likely to solve novel problems on subsequent topics (with a success rate of 66.2%) than those who received tutoring from human tutors alone (rate of 60.7%). In interviews, tutors highlighted LearnLM's strength at drafting Socratic questions that encouraged deeper reflection from students, with multiple tutors even reporting that they learned new pedagogical practices from the model. Overall, our results suggest that pedagogically fine-tuned AI tutoring systems may play a promising role in delivering effective, individualized learning support at scale.