Polemic questions need more than one viewpoint to express a balanced answer. Large Language Models (LLMs) can provide a balanced answer, but also take a single aligned viewpoint or refuse to answer. In this paper, we study if such initial responses can be steered to a specific viewpoint in a simple and intuitive way: by only providing one-sided arguments supporting the viewpoint. Our systematic study has three dimensions: (i) which stance is induced in the LLM response, (ii) how the polemic question is formulated, (iii) how the arguments are shown. We construct a small dataset and remarkably find that opinion steering occurs across (i)-(iii) for diverse models, number of arguments, and topics. Switching to other arguments consistently decreases opinion steering.