Abstract:Embedding geometry plays a fundamental role in retrieval quality, yet dense retrievers for retrieval-augmented generation (RAG) remain largely confined to Euclidean space. However, natural language exhibits hierarchical structure from broad topics to specific entities that Euclidean embeddings fail to preserve, causing semantically distant documents to appear spuriously similar and increasing hallucination risk. To address these limitations, we introduce hyperbolic dense retrieval, developing two model variants in the Lorentz model of hyperbolic space: HyTE-FH, a fully hyperbolic transformer, and HyTE-H, a hybrid architecture projecting pre-trained Euclidean embeddings into hyperbolic space. To prevent representational collapse during sequence aggregation, we introduce the Outward Einstein Midpoint, a geometry-aware pooling operator that provably preserves hierarchical structure. On MTEB, HyTE-FH outperforms equivalent Euclidean baselines, while on RAGBench, HyTE-H achieves up to 29% gains over Euclidean baselines in context relevance and answer relevance using substantially smaller models than current state-of-the-art retrievers. Our analysis also reveals that hyperbolic representations encode document specificity through norm-based separation, with over 20% radial increase from general to specific concepts, a property absent in Euclidean embeddings, underscoring the critical role of geometric inductive bias in faithful RAG systems.
Abstract:Universal Multimodal Retrieval (UMR) seeks any-to-any search across text and vision, yet modern embedding models remain brittle when queries require latent reasoning (e.g., resolving underspecified references or matching compositional constraints). We argue this brittleness is often data-induced: when images carry "silent" evidence and queries leave key semantics implicit, a single embedding pass must both reason and compress, encouraging spurious feature matching. We propose a data-centric framework that decouples these roles by externalizing reasoning before retrieval. Using a strong Vision--Language Model, we make implicit semantics explicit by densely captioning visual evidence in corpus entries, resolving ambiguous multimodal references in queries, and rewriting verbose instructions into concise retrieval constraints. Inference-time enhancement alone is insufficient; the retriever must be trained on these semantically dense representations to avoid distribution shift and fully exploit the added signal. Across M-BEIR, our reasoning-augmented training method yields consistent gains over strong baselines, with ablations showing that corpus enhancement chiefly benefits knowledge-intensive queries while query enhancement is critical for compositional modification requests. We publicly release our code at https://github.com/AugmentedRetrieval/ReasoningAugmentedRetrieval.