Spreading dynamics is a central topic in the physics of complex systems and network science, providing a unified framework for understanding how information, behaviors, and diseases propagate through interactions among system units. In many propagation contexts, spreading processes are influenced by multiple interacting factors, such as information expression patterns, cultural contexts, living environments, cognitive preferences, and public policies, which are difficult to incorporate directly into classical modeling frameworks. Recently, large language models (LLMs) have exhibited strong capabilities in natural language understanding, reasoning, and generation, enabling explicit perception of semantic content and contextual cues in spreading processes, thereby supporting the analysis of the different influencing factors. Beyond serving as external analytical tools, LLMs can also act as interactive agents embedded in propagation systems, potentially influencing spreading pathways and feedback structures. Consequently, the roles and impacts of LLMs on spreading dynamics have become an active and rapidly growing research area across multiple research disciplines. This review provides a comprehensive overview of recent advances in applying LLMs to the study of spreading dynamics across two representative domains: digital epidemics, such as misinformation and rumors, and biological epidemics, including infectious disease outbreaks. We first examine the foundations of epidemic modeling from a complex-systems perspective and discuss how LLM-based approaches relate to traditional frameworks. We then systematically review recent studies from three key perspectives, which are epidemic modeling, epidemic detection and surveillance, and epidemic prediction and management, to clarify how LLMs enhance these areas. Finally, open challenges and potential research directions are discussed.