Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Jul 31, 2025
Abstract:Clinical decision-making relies on the integrated analysis of medical images and the associated clinical reports. While Vision-Language Models (VLMs) can offer a unified framework for such tasks, they can exhibit strong biases toward one modality, frequently overlooking critical visual cues in favor of textual information. In this work, we introduce Selective Modality Shifting (SMS), a perturbation-based approach to quantify a model's reliance on each modality in binary classification tasks. By systematically swapping images or text between samples with opposing labels, we expose modality-specific biases. We assess six open-source VLMs-four generalist models and two fine-tuned for medical data-on two medical imaging datasets with distinct modalities: MIMIC-CXR (chest X-ray) and FairVLMed (scanning laser ophthalmoscopy). By assessing model performance and the calibration of every model in both unperturbed and perturbed settings, we reveal a marked dependency on text input, which persists despite the presence of complementary visual information. We also perform a qualitative attention-based analysis which further confirms that image content is often overshadowed by text details. Our findings highlight the importance of designing and evaluating multimodal medical models that genuinely integrate visual and textual cues, rather than relying on single-modality signals.
* Accepted to MICCAI 2025 1st Workshop on Multimodal Large Language
Models (MLLMs) in Clinical Practice
Via

Jul 26, 2025
Abstract:State-of-the-art audio classification often employs a zero-shot approach, which involves comparing audio embeddings with embeddings from text describing the respective audio class. These embeddings are usually generated by neural networks trained through contrastive learning to align audio and text representations. Identifying the optimal text description for an audio class is challenging, particularly when the class comprises a wide variety of sounds. This paper examines few-shot methods designed to improve classification accuracy beyond the zero-shot approach. Specifically, audio embeddings are grouped by class and processed to replace the inherently noisy text embeddings. Our results demonstrate that few-shot classification typically outperforms the zero-shot baseline.
* Submitted to Interspeech 2025
Via

Jul 28, 2025
Abstract:The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
* 9 pages, 9 figures. Jake Thomas served as Editor for this manuscript
Via

Jul 28, 2025
Abstract:Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific $n$-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.
Via

Jul 30, 2025
Abstract:Molecular property prediction is an increasingly critical task within drug discovery and development. Typically, neural networks can learn molecular properties using graph-based, language-based or feature-based methods. Recent advances in natural language processing have highlighted the capabilities of neural networks to learn complex human language using masked language modelling. These approaches to training large transformer-based deep learning models have also been used to learn the language of molecules, as represented by simplified molecular-input line-entry system (SMILES) strings. Here, we present novel domain-specific text-to-text pretraining tasks that yield improved performance in six classification-based molecular property prediction benchmarks, relative to both traditional likelihood-based training and previously proposed fine-tuning tasks. Through ablation studies, we show that data and computational efficiency can be improved by using these domain-specific pretraining tasks. Finally, the pretrained embeddings from the model can be used as fixed inputs into a downstream machine learning classifier and yield comparable performance to finetuning but with much lower computational overhead.
Via

Jul 30, 2025
Abstract:Recent generative models face significant risks of producing harmful content, which has underscored the importance of machine unlearning (MU) as a critical technique for eliminating the influence of undesired data. However, existing MU methods typically assign the same weight to all data to be forgotten, which makes it difficult to effectively forget certain data that is harder to unlearn than others. In this paper, we empirically demonstrate that the loss of data itself can implicitly reflect its varying difficulty. Building on this insight, we introduce Loss-based Reweighting Unlearning (LoReUn), a simple yet effective plug-and-play strategy that dynamically reweights data during the unlearning process with minimal additional computational overhead. Our approach significantly reduces the gap between existing MU methods and exact unlearning in both image classification and generation tasks, effectively enhancing the prevention of harmful content generation in text-to-image diffusion models.
* 23 pages
Via

Aug 06, 2025
Abstract:Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
Via

Jul 30, 2025
Abstract:Large Language Models (LLMs) have become a cornerstone in Natural Language Processing (NLP), achieving impressive performance in text generation. Their token-level representations capture rich, human-aligned semantics. However, pooling these vectors into a text embedding discards crucial information. Nevertheless, many non-generative downstream tasks, such as clustering, classification, or retrieval, still depend on accurate and controllable sentence- or document-level embeddings. We explore several adaptation strategies for pre-trained, decoder-only LLMs: (i) various aggregation techniques for token embeddings, (ii) task-specific prompt engineering, and (iii) text-level augmentation via contrastive fine-tuning. Combining these components yields state-of-the-art performance on the English clustering track of the Massive Text Embedding Benchmark (MTEB). An analysis of the attention map further shows that fine-tuning shifts focus from prompt tokens to semantically relevant words, indicating more effective compression of meaning into the final hidden state. Our experiments demonstrate that LLMs can be effectively adapted as text embedding models through a combination of prompt engineering and resource-efficient contrastive fine-tuning on synthetically generated positive pairs.
Via

Aug 05, 2025
Abstract:Phonetic speech transcription is crucial for fine-grained linguistic analysis and downstream speech applications. While Connectionist Temporal Classification (CTC) is a widely used approach for such tasks due to its efficiency, it often falls short in recognition performance, especially under unclear and nonfluent speech. In this work, we propose LCS-CTC, a two-stage framework for phoneme-level speech recognition that combines a similarity-aware local alignment algorithm with a constrained CTC training objective. By predicting fine-grained frame-phoneme cost matrices and applying a modified Longest Common Subsequence (LCS) algorithm, our method identifies high-confidence alignment zones which are used to constrain the CTC decoding path space, thereby reducing overfitting and improving generalization ability, which enables both robust recognition and text-free forced alignment. Experiments on both LibriSpeech and PPA demonstrate that LCS-CTC consistently outperforms vanilla CTC baselines, suggesting its potential to unify phoneme modeling across fluent and non-fluent speech.
* 2025 ASRU
Via

Jul 29, 2025
Abstract:Contrastive Language-Image Pretraining (CLIP) is a popular foundation model, supporting from zero-shot classification, retrieval to encoders for multimodal large language models (MLLMs). Although CLIP is successfully trained on billion-scale image-text pairs from the English world, scaling CLIP's training further to learning from the worldwide web data is still challenging: (1) no curation method is available to handle data points from non-English world; (2) the English performance from existing multilingual CLIP is worse than its English-only counterpart, i.e., "curse of multilinguality" that is common in LLMs. Here, we present MetaCLIP 2, the first recipe training CLIP from scratch on worldwide web-scale image-text pairs. To generalize our findings, we conduct rigorous ablations with minimal changes that are necessary to address the above challenges and present a recipe enabling mutual benefits from English and non-English world data. In zero-shot ImageNet classification, MetaCLIP 2 ViT-H/14 surpasses its English-only counterpart by 0.8% and mSigLIP by 0.7%, and surprisingly sets new state-of-the-art without system-level confounding factors (e.g., translation, bespoke architecture changes) on multilingual benchmarks, such as CVQA with 57.4%, Babel-ImageNet with 50.2% and XM3600 with 64.3% on image-to-text retrieval.
* 10 pages
Via
