Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
Aug 25, 2025
Abstract:With the increasing prevalence of multimodal content on social media, sentiment analysis faces significant challenges in effectively processing heterogeneous data and recognizing multi-label emotions. Existing methods often lack effective cross-modal fusion and external knowledge integration. We propose SentiMM, a novel multi-agent framework designed to systematically address these challenges. SentiMM processes text and visual inputs through specialized agents, fuses multimodal features, enriches context via knowledge retrieval, and aggregates results for final sentiment classification. We also introduce SentiMMD, a large-scale multimodal dataset with seven fine-grained sentiment categories. Extensive experiments demonstrate that SentiMM achieves superior performance compared to state-of-the-art baselines, validating the effectiveness of our structured approach.
Via

Aug 26, 2025
Abstract:This paper addresses the challenge of Database Entity Recognition (DB-ER) in Natural Language Queries (NLQ). We present several key contributions to advance this field: (1) a human-annotated benchmark for DB-ER task, derived from popular text-to-sql benchmarks, (2) a novel data augmentation procedure that leverages automatic annotation of NLQs based on the corresponding SQL queries which are available in popular text-to-SQL benchmarks, (3) a specialized language model based entity recognition model using T5 as a backbone and two down-stream DB-ER tasks: sequence tagging and token classification for fine-tuning of backend and performing DB-ER respectively. We compared our DB-ER tagger with two state-of-the-art NER taggers, and observed better performance in both precision and recall for our model. The ablation evaluation shows that data augmentation boosts precision and recall by over 10%, while fine-tuning of the T5 backbone boosts these metrics by 5-10%.
* 6 pages, 5 figures. Accepted at IEEE 26th International Conference on
Information Reuse and Integration for Data Science (IRI 2025), San Jose,
California, August 6-8, 2025
Via

Aug 06, 2025
Abstract:Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost.
* 16 pages, 6 figures
Via

Aug 26, 2025
Abstract:Steganography is technique of hiding a data under cover media using different steganography tools. Image steganography is hiding of data (Text/Image/Audio/Video) under a cover as Image. This review paper presents classification of image steganography and the comparison of various Image steganography tools using different image formats. Analyzing numerous tools on the basis of Image features and extracting the best one. Some of the tools available in the market were selected based on the frequent use; these tools were tested using the same input on all of them. Specific text was embedded within all host images for each of the six Steganography tools selected. The results of the experiment reveal that all the six tools were relatively performing at the same level, though some software performs better than others through efficiency. And it was based on the image features like size, dimensions, and pixel value and histogram differentiation.
* 20
Via

Aug 25, 2025
Abstract:Despite the overwhelming performance improvements offered by recent natural language procesing (NLP) models, the decisions made by these models are largely a black box. Towards closing this gap, the field of causal NLP combines causal inference literature with modern NLP models to elucidate causal effects of text features. We replicate and extend Bansal et al's work on regularizing text classifiers to adhere to estimated effects, focusing instead on model interpretability. Specifically, we focus on developing a two-headed RieszNet-based neural network architecture which achieves better treatment effect estimation accuracy. Our framework, CausalSent, accurately predicts treatment effects in semi-synthetic IMDB movie reviews, reducing MAE of effect estimates by 2-3x compared to Bansal et al's MAE on synthetic Civil Comments data. With an ensemble of validated models, we perform an observational case study on the causal effect of the word "love" in IMDB movie reviews, finding that the presence of the word "love" causes a +2.9% increase in the probability of a positive sentiment.
Via

Aug 11, 2025
Abstract:Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.
* 14 pages, 7 tables, 2 figures
Via

Aug 11, 2025
Abstract:Recent progress in large language models (LLMs) has leveraged their in-context learning (ICL) abilities to enable quick adaptation to unseen biomedical NLP tasks. By incorporating only a few input-output examples into prompts, LLMs can rapidly perform these new tasks. While the impact of these demonstrations on LLM performance has been extensively studied, most existing approaches prioritize representativeness over diversity when selecting examples from large corpora. To address this gap, we propose Dual-Div, a diversity-enhanced data-efficient framework for demonstration selection in biomedical ICL. Dual-Div employs a two-stage retrieval and ranking process: First, it identifies a limited set of candidate examples from a corpus by optimizing both representativeness and diversity (with optional annotation for unlabeled data). Second, it ranks these candidates against test queries to select the most relevant and non-redundant demonstrations. Evaluated on three biomedical NLP tasks (named entity recognition (NER), relation extraction (RE), and text classification (TC)) using LLaMA 3.1 and Qwen 2.5 for inference, along with three retrievers (BGE-Large, BMRetriever, MedCPT), Dual-Div consistently outperforms baselines-achieving up to 5% higher macro-F1 scores-while demonstrating robustness to prompt permutations and class imbalance. Our findings establish that diversity in initial retrieval is more critical than ranking-stage optimization, and limiting demonstrations to 3-5 examples maximizes performance efficiency.
Via

Aug 26, 2025
Abstract:The success of deep learning-based speaker verification systems is largely attributed to access to large-scale and diverse speaker identity data. However, collecting data from more identities is expensive, challenging, and often limited by privacy concerns. To address this limitation, we propose INSIDE (Interpolating Speaker Identities in Embedding Space), a novel data expansion method that synthesizes new speaker identities by interpolating between existing speaker embeddings. Specifically, we select pairs of nearby speaker embeddings from a pretrained speaker embedding space and compute intermediate embeddings using spherical linear interpolation. These interpolated embeddings are then fed to a text-to-speech system to generate corresponding speech waveforms. The resulting data is combined with the original dataset to train downstream models. Experiments show that models trained with INSIDE-expanded data outperform those trained only on real data, achieving 3.06\% to 5.24\% relative improvements. While INSIDE is primarily designed for speaker verification, we also validate its effectiveness on gender classification, where it yields a 13.44\% relative improvement. Moreover, INSIDE is compatible with other augmentation techniques and can serve as a flexible, scalable addition to existing training pipelines.
* accepted by APSIPA ASC 2025
Via

Aug 27, 2025
Abstract:Retrieval-augmented learning based on radiology reports has emerged as a promising direction to improve performance on long-tail medical imaging tasks, such as rare disease detection in chest X-rays. Most existing methods rely on comparing high-dimensional text embeddings from models like CLIP or CXR-BERT, which are often difficult to interpret, computationally expensive, and not well-aligned with the structured nature of medical knowledge. We propose a novel, ontology-driven alternative for comparing radiology report texts based on clinically grounded concepts from the Unified Medical Language System (UMLS). Our method extracts standardised medical entities from free-text reports using an enhanced pipeline built on RadGraph-XL and SapBERT. These entities are linked to UMLS concepts (CUIs), enabling a transparent, interpretable set-based representation of each report. We then define a task-adaptive similarity measure based on a modified and weighted version of the Tversky Index that accounts for synonymy, negation, and hierarchical relationships between medical entities. This allows efficient and semantically meaningful similarity comparisons between reports. We demonstrate that our approach outperforms state-of-the-art embedding-based retrieval methods in a radiograph classification task on MIMIC-CXR, particularly in long-tail settings. Additionally, we use our pipeline to generate ontology-backed disease labels for MIMIC-CXR, offering a valuable new resource for downstream learning tasks. Our work provides more explainable, reliable, and task-specific retrieval strategies in clinical AI systems, especially when interpretability and domain knowledge integration are essential. Our code is available at https://github.com/Felix-012/ontology-concept-distillation
* 10 pages, 3 figures, Preprint (submitted version, de-anonymized).
Accepted at MLMI (MICCAI Workshop) 2025. Version of Record to appear in
Springer LNCS; This preprint has not undergone peer review or any
post-submission improvements or corrections
Via

Aug 25, 2025
Abstract:This study proposes the dual technological innovation framework, including a cross-modal differ entiated quantization framework for vision-language models (VLMs) and a scene-aware vectorized memory multi-agent system for visually impaired assistance. The modular framework was developed implementing differentiated processing strategies, effectively reducing memory requirements from 38GB to 16GB while maintaining model performance. The multi-agent architecture combines scene classification, vectorized memory, and multimodal interaction, enabling persistent storage and efficient retrieval of scene memories. Through perception-memory-reasoning workflows, the system provides environmental information beyond the current view using historical memories. Experiments show the quantized 19B-parameter model only experiences a 2.05% performance drop on MMBench and maintains 63.7 accuracy on OCR-VQA (original: 64.9), outperforming smaller models with equivalent memory requirements like the Molmo-7B series. The system maintains response latency between 2.83-3.52 seconds from scene analysis to initial speech output, substantially faster than non-streaming methods. This research advances computational efficiency and assistive technology, offering visually impaired users comprehensive real-time assistance in scene perception, text recognition, and navigation.
* 28 pages,9 figures
Via
