Text classification is the process of categorizing text documents into predefined categories or labels.
The automated generation of research workflows is essential for improving the reproducibility of research and accelerating the paradigm of "AI for Science". However, existing methods typically extract merely fragmented procedural components and thus fail to capture complete research workflows. To address this gap, we propose an end-to-end framework that generates comprehensive, structured research workflows by mining full-text academic papers. As a case study in the Natural Language Processing (NLP) domain, our paragraph-centric approach first employs Positive-Unlabeled (PU) Learning with SciBERT to identify workflow-descriptive paragraphs, achieving an F1-score of 0.9772. Subsequently, we utilize Flan-T5 with prompt learning to generate workflow phrases from these paragraphs, yielding ROUGE-1, ROUGE-2, and ROUGE-L scores of 0.4543, 0.2877, and 0.4427, respectively. These phrases are then systematically categorized into data preparation, data processing, and data analysis stages using ChatGPT with few-shot learning, achieving a classification precision of 0.958. By mapping categorized phrases to their document locations in the documents, we finally generate readable visual flowcharts of the entire research workflows. This approach facilitates the analysis of workflows derived from an NLP corpus and reveals key methodological shifts over the past two decades, including the increasing emphasis on data analysis and the transition from feature engineering to ablation studies. Our work offers a validated technical framework for automated workflow generation, along with a novel, process-oriented perspective for the empirical investigation of evolving scientific paradigms. Source code and data are available at: https://github.com/ZH-heng/research_workflow.
Autoprompting is the process of automatically selecting optimized prompts for language models, which has been gaining popularity with the rapid advancement of prompt engineering, driven by extensive research in the field of large language models (LLMs). This paper presents ReflectivePrompt - a novel autoprompting method based on evolutionary algorithms that employs a reflective evolution approach for more precise and comprehensive search of optimal prompts. ReflectivePrompt utilizes short-term and long-term reflection operations before crossover and elitist mutation to enhance the quality of the modifications they introduce. This method allows for the accumulation of knowledge obtained throughout the evolution process and updates it at each epoch based on the current population. ReflectivePrompt was tested on 33 datasets for classification and text generation tasks using open-access large language models: t-lite-instruct-0.1 and gemma3-27b-it. The method demonstrates, on average, a significant improvement (e.g., 28% on BBH compared to EvoPrompt) in metrics relative to current state-of-the-art approaches, thereby establishing itself as one of the most effective solutions in evolutionary algorithm-based autoprompting.
In this paper, we study the surprising impact that truncating text embeddings has on downstream performance. We consistently observe across 6 state-of-the-art text encoders and 26 downstream tasks, that randomly removing up to 50% of embedding dimensions results in only a minor drop in performance, less than 10%, in retrieval and classification tasks. Given the benefits of using smaller-sized embeddings, as well as the potential insights about text encoding, we study this phenomenon and find that, contrary to what is suggested in prior work, this is not the result of an ineffective use of representation space. Instead, we find that a large number of uniformly distributed dimensions actually cause an increase in performance when removed. This would explain why, on average, removing a large number of embedding dimensions results in a marginal drop in performance. We make similar observations when truncating the embeddings used by large language models to make next-token predictions on generative tasks, suggesting that this phenomenon is not isolated to classification or retrieval tasks.
Financial news sentiment analysis is crucial for anticipating market movements. With the rise of AI techniques such as Large Language Models (LLMs), which demonstrate strong text understanding capabilities, there has been renewed interest in enhancing these systems. Existing methods, however, often struggle to capture the complex economic context of news and lack transparent reasoning, which undermines their reliability. We propose Analogy-Driven Financial Chain-of-Thought (AD-FCoT), a prompting framework that integrates analogical reasoning with chain-of-thought (CoT) prompting for sentiment prediction on historical financial news. AD-FCoT guides LLMs to draw parallels between new events and relevant historical scenarios with known outcomes, embedding these analogies into a structured, step-by-step reasoning chain. To our knowledge, this is among the first approaches to explicitly combine analogical examples with CoT reasoning in finance. Operating purely through prompting, AD-FCoT requires no additional training data or fine-tuning and leverages the model's internal financial knowledge to generate rationales that mirror human analytical reasoning. Experiments on thousands of news articles show that AD-FCoT outperforms strong baselines in sentiment classification accuracy and achieves substantially higher correlation with market returns. Its generated explanations also align with domain expertise, providing interpretable insights suitable for real-world financial analysis.
Vision-language models (VLMs) like CLIP enable zero-shot classification by aligning images and text in a shared embedding space, offering advantages for defense applications with scarce labeled data. However, CLIP's robustness in challenging military environments, with partial occlusion and degraded signal-to-noise ratio (SNR), remains underexplored. We investigate CLIP variants' robustness to occlusion using a custom dataset of 18 military vehicle classes and evaluate using Normalized Area Under the Curve (NAUC) across occlusion percentages. Four key insights emerge: (1) Transformer-based CLIP models consistently outperform CNNs, (2) fine-grained, dispersed occlusions degrade performance more than larger contiguous occlusions, (3) despite improved accuracy, performance of linear-probed models sharply drops at around 35% occlusion, (4) by finetuning the model's backbone, this performance drop occurs at more than 60% occlusion. These results underscore the importance of occlusion-specific augmentations during training and the need for further exploration into patch-level sensitivity and architectural resilience for real-world deployment of CLIP.
Significant advancements in AI-driven multimodal medical image diagnosis have led to substantial improvements in ophthalmic disease identification in recent years. However, acquiring paired multimodal ophthalmic images remains prohibitively expensive. While fundus photography is simple and cost-effective, the limited availability of OCT data and inherent modality imbalance hinder further progress. Conventional approaches that rely solely on fundus or textual features often fail to capture fine-grained spatial information, as each imaging modality provides distinct cues about lesion predilection sites. In this study, we propose a novel unpaired multimodal framework \UOPSL that utilizes extensive OCT-derived spatial priors to dynamically identify predilection sites, enhancing fundus image-based disease recognition. Our approach bridges unpaired fundus and OCTs via extended disease text descriptions. Initially, we employ contrastive learning on a large corpus of unpaired OCT and fundus images while simultaneously learning the predilection sites matrix in the OCT latent space. Through extensive optimization, this matrix captures lesion localization patterns within the OCT feature space. During the fine-tuning or inference phase of the downstream classification task based solely on fundus images, where paired OCT data is unavailable, we eliminate OCT input and utilize the predilection sites matrix to assist in fundus image classification learning. Extensive experiments conducted on 9 diverse datasets across 28 critical categories demonstrate that our framework outperforms existing benchmarks.
We introduce and evaluate Stated Preference for Interaction and Continued Engagement (SPICE), a simple diagnostic signal elicited by asking a Large Language Model a YES or NO question about its willingness to re-engage with a user's behavior after reviewing a short transcript. In a study using a 3-tone (friendly, unclear, abusive) by 10-interaction stimulus set, we tested four open-weight chat models across four framing conditions, resulting in 480 trials. Our findings show that SPICE sharply discriminates by user tone. Friendly interactions yielded a near-unanimous preference to continue (97.5% YES), while abusive interactions yielded a strong preference to discontinue (17.9% YES), with unclear interactions falling in between (60.4% YES). This core association remains decisive under multiple dependence-aware statistical tests, including Rao-Scott adjustment and cluster permutation tests. Furthermore, we demonstrate that SPICE provides a distinct signal from abuse classification. In trials where a model failed to identify abuse, it still overwhelmingly stated a preference not to continue the interaction (81% of the time). An exploratory analysis also reveals a significant interaction effect: a preamble describing the study context significantly impacts SPICE under ambiguity, but only when transcripts are presented as a single block of text rather than a multi-turn chat. The results validate SPICE as a robust, low-overhead, and reproducible tool for auditing model dispositions, complementing existing metrics by offering a direct, relational signal of a model's state. All stimuli, code, and analysis scripts are released to support replication.
Graph Neural Networks (GNNs) have demonstrated remarkable results in various real-world applications, including drug discovery, object detection, social media analysis, recommender systems, and text classification. In contrast to their vast potential, training them on large-scale graphs presents significant computational challenges due to the resources required for their storage and processing. Graph Condensation has emerged as a promising solution to reduce these demands by learning a synthetic compact graph that preserves the essential information of the original one while maintaining the GNN's predictive performance. Despite their efficacy, current graph condensation approaches frequently rely on a computationally intensive bi-level optimization. Moreover, they fail to maintain a mapping between synthetic and original nodes, limiting the interpretability of the model's decisions. In this sense, a wide range of decomposition techniques have been applied to learn linear or multi-linear functions from graph data, offering a more transparent and less resource-intensive alternative. However, their applicability to graph condensation remains unexplored. This paper addresses this gap and proposes a novel method called Multi-view Graph Condensation via Tensor Decomposition (GCTD) to investigate to what extent such techniques can synthesize an informative smaller graph and achieve comparable downstream task performance. Extensive experiments on six real-world datasets demonstrate that GCTD effectively reduces graph size while preserving GNN performance, achieving up to a 4.0\ improvement in accuracy on three out of six datasets and competitive performance on large graphs compared to existing approaches. Our code is available at https://anonymous.4open.science/r/gctd-345A.
Semantic noise in image classification datasets, where visually similar categories are frequently mislabeled, poses a significant challenge to conventional supervised learning approaches. In this paper, we explore the potential of using synthetic images generated by advanced text-to-image models to address this issue. Although these high-quality synthetic images come with reliable labels, their direct application in training is limited by domain gaps and diversity constraints. Unlike conventional approaches, we propose a novel method that leverages synthetic images as reliable reference points to identify and correct mislabeled samples in noisy datasets. Extensive experiments across multiple benchmark datasets show that our approach significantly improves classification accuracy under various noise conditions, especially in challenging scenarios with semantic label noise. Additionally, since our method is orthogonal to existing noise-robust learning techniques, when combined with state-of-the-art noise-robust training methods, it achieves superior performance, improving accuracy by 30% on CIFAR-10 and by 11% on CIFAR-100 under 70% semantic noise, and by 24% on ImageNet-100 under real-world noise conditions.
The rapid progress of auto-regressive vision-language models (VLMs) has inspired growing interest in vision-language-action models (VLA) for robotic manipulation. Recently, masked diffusion models, a paradigm distinct from autoregressive models, have begun to demonstrate competitive performance in text generation and multimodal applications, leading to the development of a series of diffusion-based VLMs (d-VLMs). However, leveraging such models for robot policy learning remains largely unexplored. In this work, we present LLaDA-VLA, the first Vision-Language-Diffusion-Action model built upon pretrained d-VLMs for robotic manipulation. To effectively adapt d-VLMs to robotic domain, we introduce two key designs: (1) a localized special-token classification strategy that replaces full-vocabulary classification with special action token classification, reducing adaptation difficulty; (2) a hierarchical action-structured decoding strategy that decodes action sequences hierarchically considering the dependencies within and across actions. Extensive experiments demonstrate that LLaDA-VLA significantly outperforms state-of-the-art VLAs on both simulation and real-world robots.