Abstract:Novelty is a core component of academic papers, and there are multiple perspectives on the assessment of novelty. Existing methods often focus on word or entity combinations, which provide limited insights. The content related to a paper's novelty is typically distributed across different core sections, e.g., Introduction, Methodology and Results. Therefore, exploring the optimal combination of sections for evaluating the novelty of a paper is important for advancing automated novelty assessment. In this paper, we utilize different combinations of sections from academic papers as inputs to drive language models to predict novelty scores. We then analyze the results to determine the optimal section combinations for novelty score prediction. We first employ natural language processing techniques to identify the sectional structure of academic papers, categorizing them into introduction, methods, results, and discussion (IMRaD). Subsequently, we used different combinations of these sections (e.g., introduction and methods) as inputs for pretrained language models (PLMs) and large language models (LLMs), employing novelty scores provided by human expert reviewers as ground truth labels to obtain prediction results. The results indicate that using introduction, results and discussion is most appropriate for assessing the novelty of a paper, while the use of the entire text does not yield significant results. Furthermore, based on the results of the PLMs and LLMs, the introduction and results appear to be the most important section for the task of novelty score prediction. The code and dataset for this paper can be accessed at https://github.com/njust-winchy/SC4ANM.
Abstract:Peer review is vital in academia for evaluating research quality. Top AI conferences use reviewer confidence scores to ensure review reliability, but existing studies lack fine-grained analysis of text-score consistency, potentially missing key details. This work assesses consistency at word, sentence, and aspect levels using deep learning and NLP conference review data. We employ deep learning to detect hedge sentences and aspects, then analyze report length, hedge word/sentence frequency, aspect mentions, and sentiment to evaluate text-score alignment. Correlation, significance, and regression tests examine confidence scores' impact on paper outcomes. Results show high text-score consistency across all levels, with regression revealing higher confidence scores correlate with paper rejection, validating expert assessments and peer review fairness.
Abstract:Abstractive summarization of scientific papers has always been a research focus, yet existing methods face two main challenges. First, most summarization models rely on Encoder-Decoder architectures that treat papers as sequences of words, thus fail to fully capture the structured information inherent in scientific papers. Second, existing research often use keyword mapping or feature engineering to identify the structural information, but these methods struggle with the structural flexibility of scientific papers and lack robustness across different disciplines. To address these challenges, we propose a two-stage abstractive summarization framework that leverages automatic recognition of structural functions within scientific papers. In the first stage, we standardize chapter titles from numerous scientific papers and construct a large-scale dataset for structural function recognition. A classifier is then trained to automatically identify the key structural components (e.g., Background, Methods, Results, Discussion), which provides a foundation for generating more balanced summaries. In the second stage, we employ Longformer to capture rich contextual relationships across sections and generating context-aware summaries. Experiments conducted on two domain-specific scientific paper summarization datasets demonstrate that our method outperforms advanced baselines, and generates more comprehensive summaries. The code and dataset can be accessed at https://github.com/tongbao96/code-for-SFR-AS.
Abstract:Large Language Models (LLMs), such as ChatGPT, have prompted academic concerns about their impact on academic writing. Existing studies have primarily examined LLM usage in academic writing through quantitative approaches, such as word frequency statistics and probability-based analyses. However, few have systematically examined the potential impact of LLMs on the linguistic characteristics of academic writing. To address this gap, we conducted a large-scale analysis across 823,798 abstracts published in last decade from arXiv dataset. Through the linguistic analysis of features such as the frequency of LLM-preferred words, lexical complexity, syntactic complexity, cohesion, readability and sentiment, the results indicate a significant increase in the proportion of LLM-preferred words in abstracts, revealing the widespread influence of LLMs on academic writing. Additionally, we observed an increase in lexical complexity and sentiment in the abstracts, but a decrease in syntactic complexity, suggesting that LLMs introduce more new vocabulary and simplify sentence structure. However, the significant decrease in cohesion and readability indicates that abstracts have fewer connecting words and are becoming more difficult to read. Moreover, our analysis reveals that scholars with weaker English proficiency were more likely to use the LLMs for academic writing, and focused on improving the overall logic and fluency of the abstracts. Finally, at discipline level, we found that scholars in Computer Science showed more pronounced changes in writing style, while the changes in Mathematics were minimal.
Abstract:Citation recommendation aims to locate the important papers for scholars to cite. When writing the citing sentences, the authors usually hold different citing intents, which are referred to citation function in citation analysis. Since argumentative zoning is to identify the argumentative and rhetorical structure in scientific literature, we want to use this information to improve the citation recommendation task. In this paper, a multi-task learning model is built for citation recommendation and argumentative zoning classification. We also generated an annotated corpus of the data from PubMed Central based on a new argumentative zoning schema. The experimental results show that, by considering the argumentative information in the citing sentence, citation recommendation model will get better performance.
Abstract:Novelty evaluation is vital for the promotion and management of innovation. With the advancement of information techniques and the open data movement, some progress has been made in novelty measurements. Tracking and reviewing novelty measures provides a data-driven way to assess contributions, progress, and emerging directions in the science field. As academic papers serve as the primary medium for the dissemination, validation, and discussion of scientific knowledge, this review aims to offer a systematic analysis of novelty measurements for scientific papers. We began by comparing the differences between scientific novelty and four similar concepts, including originality, scientific innovation, creativity, and scientific breakthrough. Next, we reviewed the types of scientific novelty. Then, we classified existing novelty measures according to data types and reviewed the measures for each type. Subsequently, we surveyed the approaches employed in validating novelty measures and examined the current tools and datasets associated with these measures. Finally, we proposed several open issues for future studies.
Abstract:The recent advances in Large Language Models (LLMs) have stimulated interest among researchers and industry professionals, particularly in their application to tasks concerning mobile user interfaces (UIs). This position paper investigates the use of LLMs for UI layout generation. Central to our exploration is the introduction of UI grammar -- a novel approach we proposed to represent the hierarchical structure inherent in UI screens. The aim of this approach is to guide the generative capacities of LLMs more effectively and improve the explainability and controllability of the process. Initial experiments conducted with GPT-4 showed the promising capability of LLMs to produce high-quality user interfaces via in-context learning. Furthermore, our preliminary comparative study suggested the potential of the grammar-based approach in improving the quality of generative results in specific aspects.
Abstract:Future work sentences (FWS) are the particular sentences in academic papers that contain the author's description of their proposed follow-up research direction. This paper presents methods to automatically extract FWS from academic papers and classify them according to the different future directions embodied in the paper's content. FWS recognition methods will enable subsequent researchers to locate future work sentences more accurately and quickly and reduce the time and cost of acquiring the corpus. The current work on automatic identification of future work sentences is relatively small, and the existing research cannot accurately identify FWS from academic papers, and thus cannot conduct data mining on a large scale. Furthermore, there are many aspects to the content of future work, and the subdivision of the content is conducive to the analysis of specific development directions. In this paper, Nature Language Processing (NLP) is used as a case study, and FWS are extracted from academic papers and classified into different types. We manually build an annotated corpus with six different types of FWS. Then, automatic recognition and classification of FWS are implemented using machine learning models, and the performance of these models is compared based on the evaluation metrics. The results show that the Bernoulli Bayesian model has the best performance in the automatic recognition task, with the Macro F1 reaching 90.73%, and the SCIBERT model has the best performance in the automatic classification task, with the weighted average F1 reaching 72.63%. Finally, we extract keywords from FWS and gain a deep understanding of the key content described in FWS, and we also demonstrate that content determination in FWS will be reflected in the subsequent research work by measuring the similarity between future work sentences and the abstracts.
Abstract:[Purpose] To better understand the online reviews and help potential consumers, businessmen, and product manufacturers effectively obtain users' evaluation on product aspects, this paper explores the distribution regularities of user attention and sentiment toward product aspects from the temporal perspective of online reviews. [Design/methodology/approach] Temporal characteristics of online reviews (purchase time, review time, and time intervals between purchase time and review time), similar attributes clustering, and attribute-level sentiment computing technologies are employed based on more than 340k smartphone reviews of three products from JD.COM (a famous online shopping platform in China) to explore the distribution regularities of user attention and sentiment toward product aspects in this article. [Findings] The empirical results show that a power-law distribution can fit user attention to product aspects, and the reviews posted in short time intervals contain more product aspects. Besides, the results show that the values of user sentiment of product aspects are significantly higher/lower in short time intervals which contribute to judging the advantages and weaknesses of a product. [Research limitations] The paper can't acquire online reviews for more products with temporal characteristics to verify the findings because of the restriction on reviews crawling by the shopping platforms. [Originality/value] This work reveals the distribution regularities of user attention and sentiment toward product aspects, which is of great significance in assisting decision-making, optimizing review presentation, and improving the shopping experience.
Abstract:In scientific research, the method is an indispensable means to solve scientific problems and a critical research object. With the advancement of sciences, many scientific methods are being proposed, modified, and used in academic literature. The authors describe details of the method in the abstract and body text, and key entities in academic literature reflecting names of the method are called method entities. Exploring diverse method entities in a tremendous amount of academic literature helps scholars understand existing methods, select the appropriate method for research tasks, and propose new methods. Furthermore, the evolution of method entities can reveal the development of a discipline and facilitate knowledge discovery. Therefore, this article offers a systematic review of methodological and empirical works focusing on extracting method entities from full-text academic literature and efforts to build knowledge services using these extracted method entities. Definitions of key concepts involved in this review were first proposed. Based on these definitions, we systematically reviewed the approaches and indicators to extract and evaluate method entities, with a strong focus on the pros and cons of each approach. We also surveyed how extracted method entities are used to build new applications. Finally, limitations in existing works as well as potential next steps were discussed.