Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
This research explores the fusion of graphology and artificial intelligence to quantify psychological stress levels in students by analyzing their handwritten examination scripts. By leveraging Optical Character Recognition and transformer based sentiment analysis models, we present a data driven approach that transcends traditional grading systems, offering deeper insights into cognitive and emotional states during examinations. The system integrates high resolution image processing, TrOCR, and sentiment entropy fusion using RoBERTa based models to generate a numerical Stress Index. Our method achieves robustness through a five model voting mechanism and unsupervised anomaly detection, making it an innovative framework in academic forensics.




Understanding emotional nuances in everyday language is crucial for computational linguistics and emotion research. While traditional lexicon-based tools like LIWC and Pattern have served as foundational instruments, Large Language Models (LLMs) promise enhanced context understanding. We evaluated three Dutch-specific LLMs (ChocoLlama-8B-Instruct, Reynaerde-7B-chat, and GEITje-7B-ultra) against LIWC and Pattern for valence prediction in Flemish, a low-resource language variant. Our dataset comprised approximately 25000 spontaneous textual responses from 102 Dutch-speaking participants, each providing narratives about their current experiences with self-assessed valence ratings (-50 to +50). Surprisingly, despite architectural advancements, the Dutch-tuned LLMs underperformed compared to traditional methods, with Pattern showing superior performance. These findings challenge assumptions about LLM superiority in sentiment analysis tasks and highlight the complexity of capturing emotional valence in spontaneous, real-world narratives. Our results underscore the need for developing culturally and linguistically tailored evaluation frameworks for low-resource language variants, while questioning whether current LLM fine-tuning approaches adequately address the nuanced emotional expressions found in everyday language use.
Large language models (LLMs) continue to advance, with an increasing number of domain-specific variants tailored for specialised tasks. However, these models often lack transparency and explainability, can be costly to fine-tune, require substantial prompt engineering, yield inconsistent results across domains, and impose significant adverse environmental impact due to their high computational demands. To address these challenges, we propose the Bayesian network LLM fusion (BNLF) framework, which integrates predictions from three LLMs, including FinBERT, RoBERTa, and BERTweet, through a probabilistic mechanism for sentiment analysis. BNLF performs late fusion by modelling the sentiment predictions from multiple LLMs as probabilistic nodes within a Bayesian network. Evaluated across three human-annotated financial corpora with distinct linguistic and contextual characteristics, BNLF demonstrates consistent gains of about six percent in accuracy over the baseline LLMs, underscoring its robustness to dataset variability and the effectiveness of probabilistic fusion for interpretable sentiment classification.




We introduce and formalize the Synthetic Dataset Quality Estimation (SynQuE) problem: ranking synthetic datasets by their expected real-world task performance using only limited unannotated real data. This addresses a critical and open challenge where data is scarce due to collection costs or privacy constraints. We establish the first comprehensive benchmarks for this problem by introducing and evaluating proxy metrics that choose synthetic data for training to maximize task performance on real data. We introduce the first proxy metrics for SynQuE by adapting distribution and diversity-based distance measures to our context via embedding models. To address the shortcomings of these metrics on complex planning tasks, we propose LENS, a novel proxy that leverages large language model reasoning. Our results show that SynQuE proxies correlate with real task performance across diverse tasks, including sentiment analysis, Text2SQL, web navigation, and image classification, with LENS consistently outperforming others on complex tasks by capturing nuanced characteristics. For instance, on text-to-SQL parsing, training on the top-3 synthetic datasets selected via SynQuE proxies can raise accuracy from 30.4% to 38.4 (+8.1)% on average compared to selecting data indiscriminately. This work establishes SynQuE as a practical framework for synthetic data selection under real-data scarcity and motivates future research on foundation model-based data characterization and fine-grained data selection.
Quantum theory provides non-classical principles, such as superposition and entanglement, that inspires promising paradigms in machine learning. However, most existing quantum-inspired fusion models rely solely on unitary or unitary-like transformations to generate quantum entanglement. While theoretically expressive, such approaches often suffer from training instability and limited generalizability. In this work, we propose a Quantum-inspired Neural Network with Quantum Jump (QiNN-QJ) for multimodal entanglement modelling. Each modality is firstly encoded as a quantum pure state, after which a differentiable module simulating the QJ operator transforms the separable product state into the entangled representation. By jointly learning Hamiltonian and Lindblad operators, QiNN-QJ generates controllable cross-modal entanglement among modalities with dissipative dynamics, where structured stochasticity and steady-state attractor properties serve to stabilize training and constrain entanglement shaping. The resulting entangled states are projected onto trainable measurement vectors to produce predictions. In addition to achieving superior performance over the state-of-the-art models on benchmark datasets, including CMU-MOSI, CMU-MOSEI, and CH-SIMS, QiNN-QJ facilitates enhanced post-hoc interpretability through von-Neumann entanglement entropy. This work establishes a principled framework for entangled multimodal fusion and paves the way for quantum-inspired approaches in modelling complex cross-modal correlations.
Machine learning models typically assume that training and test data follow the same distribution, an assumption that often fails in real-world scenarios due to distribution shifts. This issue is especially pronounced in low-resource settings, where data scarcity and limited domain diversity hinder robust generalization. Domain generalization (DG) approaches address this challenge by learning features that remain invariant across domains, often using causal mechanisms to improve model robustness. In this study, we examine two distinct causal DG techniques in low-resource natural language tasks. First, we investigate a causal data augmentation (CDA) approach that automatically generates counterfactual examples to improve robustness to spurious correlations. We apply this method to sentiment classification on the NaijaSenti Twitter corpus, expanding the training data with semantically equivalent paraphrases to simulate controlled distribution shifts. Second, we explore an invariant causal representation learning (ICRL) approach using the DINER framework, originally proposed for debiasing aspect-based sentiment analysis. We adapt DINER to a multilingual setting. Our findings demonstrate that both approaches enhance robustness to unseen domains: counterfactual data augmentation yields consistent cross-domain accuracy gains in sentiment classification, while causal representation learning with DINER improves out-of-distribution performance in multilingual sentiment analysis, albeit with varying gains across languages.




This paper presents a novel approach to sentiment classification using the application of Combinatorial Fusion Analysis (CFA) to integrate an ensemble of diverse machine learning models, achieving state-of-the-art accuracy on the IMDB sentiment analysis dataset of 97.072\%. CFA leverages the concept of cognitive diversity, which utilizes rank-score characteristic functions to quantify the dissimilarity between models and strategically combine their predictions. This is in contrast to the common process of scaling the size of individual models, and thus is comparatively efficient in computing resource use. Experimental results also indicate that CFA outperforms traditional ensemble methods by effectively computing and employing model diversity. The approach in this paper implements the combination of a transformer-based model of the RoBERTa architecture with traditional machine learning models, including Random Forest, SVM, and XGBoost.




This research-to-practice full paper was inspired by the persistent challenge in effective communication among engineering students. Public speaking is a necessary skill for future engineers as they have to communicate technical knowledge with diverse stakeholders. While universities offer courses or workshops, they are unable to offer sustained and personalized training to students. Providing comprehensive feedback on both verbal and non-verbal aspects of public speaking is time-intensive, making consistent and individualized assessment impractical. This study integrates research on verbal and non-verbal cues in public speaking to develop an AI-driven assessment model for engineering students. Our approach combines speech analysis, computer vision, and sentiment detection into a multi-modal AI system that provides assessment and feedback. The model evaluates (1) verbal communication (pitch, loudness, pacing, intonation), (2) non-verbal communication (facial expressions, gestures, posture), and (3) expressive coherence, a novel integration ensuring alignment between speech and body language. Unlike previous systems that assess these aspects separately, our model fuses multiple modalities to deliver personalized, scalable feedback. Preliminary testing demonstrated that our AI-generated feedback was moderately aligned with expert evaluations. Among the state-of-the-art AI models evaluated, all of which were Large Language Models (LLMs), including Gemini and OpenAI models, Gemini Pro emerged as the best-performing, showing the strongest agreement with human annotators. By eliminating reliance on human evaluators, this AI-driven public speaking trainer enables repeated practice, helping students naturally align their speech with body language and emotion, crucial for impactful and professional communication.




Pretrained Transformers demonstrate remarkable in-context learning (ICL) capabilities, enabling them to adapt to new tasks from demonstrations without parameter updates. However, theoretical studies often rely on simplified architectures (e.g., omitting MLPs), data models (e.g., linear regression with isotropic inputs), and single-source training, limiting their relevance to realistic settings. In this work, we study ICL in pretrained Transformers with nonlinear MLP heads on nonlinear tasks drawn from multiple data sources with heterogeneous input, task, and noise distributions. We analyze a model where the MLP comprises two layers, with the first layer trained via a single gradient step and the second layer fully optimized. Under high-dimensional asymptotics, we prove that such models are equivalent in ICL error to structured polynomial predictors, leveraging results from the theory of Gaussian universality and orthogonal polynomials. This equivalence reveals that nonlinear MLPs meaningfully enhance ICL performance, particularly on nonlinear tasks, compared to linear baselines. It also enables a precise analysis of data mixing effects: we identify key properties of high-quality data sources (low noise, structured covariances) and show that feature learning emerges only when the task covariance exhibits sufficient structure. These results are validated empirically across various activation functions, model sizes, and data distributions. Finally, we experiment with a real-world scenario involving multilingual sentiment analysis where each language is treated as a different source. Our experimental results for this case exemplify how our findings extend to real-world cases. Overall, our work advances the theoretical foundations of ICL in Transformers and provides actionable insight into the role of architecture and data in ICL.
We introduce a method for efficient multi-label text classification with large language models (LLMs), built on reformulating classification tasks as sequences of dichotomic (yes/no) decisions. Instead of generating all labels in a single structured response, each target dimension is queried independently, which, combined with a prefix caching mechanism, yields substantial efficiency gains for short-text inference without loss of accuracy. To demonstrate the approach, we focus on affective text analysis, covering 24 dimensions including emotions and sentiment. Using LLM-to-SLM distillation, a powerful annotator model (DeepSeek-V3) provides multiple annotations per text, which are aggregated to fine-tune smaller models (HerBERT-Large, CLARIN-1B, PLLuM-8B, Gemma3-1B). The fine-tuned models show significant improvements over zero-shot baselines, particularly on the dimensions seen during training. Our findings suggest that decomposing multi-label classification into dichotomic queries, combined with distillation and cache-aware inference, offers a scalable and effective framework for LLM-based classification. While we validate the method on affective states, the approach is general and applicable across domains.