Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
While Unified Multimodal Models (UMMs) have achieved remarkable success in cross-modal comprehension, a significant gap persists in their ability to leverage such internal knowledge for high-quality generation. We formalize this discrepancy as Conduction Aphasia, a phenomenon where models accurately interpret multimodal inputs but struggle to translate that understanding into faithful and controllable synthesis. To address this, we propose UniCorn, a simple yet elegant self-improvement framework that eliminates the need for external data or teacher supervision. By partitioning a single UMM into three collaborative roles: Proposer, Solver, and Judge, UniCorn generates high-quality interactions via self-play and employs cognitive pattern reconstruction to distill latent understanding into explicit generative signals. To validate the restoration of multimodal coherence, we introduce UniCycle, a cycle-consistency benchmark based on a Text to Image to Text reconstruction loop. Extensive experiments demonstrate that UniCorn achieves comprehensive and substantial improvements over the base model across six general image generation benchmarks. Notably, it achieves SOTA performance on TIIF(73.8), DPG(86.8), CompBench(88.5), and UniCycle while further delivering substantial gains of +5.0 on WISE and +6.5 on OneIG. These results highlight that our method significantly enhances T2I generation while maintaining robust comprehension, demonstrating the scalability of fully self-supervised refinement for unified multimodal intelligence.
Artificial intelligence (AI) has transformed medical imaging, with computer vision (CV) systems achieving state-of-the-art performance in classification and detection tasks. However, these systems typically output structured predictions, leaving radiologists responsible for translating results into full narrative reports. Recent advances in large language models (LLMs), such as GPT-4, offer new opportunities to bridge this gap by generating diagnostic narratives from structured findings. This study introduces a pipeline that integrates YOLOv5 and YOLOv8 for anomaly detection in chest X-ray images with a large language model (LLM) to generate natural-language radiology reports. The YOLO models produce bounding-box predictions and class labels, which are then passed to the LLM to generate descriptive findings and clinical summaries. YOLOv5 and YOLOv8 are compared in terms of detection accuracy, inference latency, and the quality of generated text, as measured by cosine similarity to ground-truth reports. Results show strong semantic similarity between AI and human reports, while human evaluation reveals GPT-4 excels in clarity (4.88/5) but exhibits lower scores for natural writing flow (2.81/5), indicating that current systems achieve clinical accuracy but remain stylistically distinguishable from radiologist-authored text.
Multimodal Large Language Models (MLLMs) have shown strong potential for radiology report generation, yet their clinical translation is hindered by architectural heterogeneity and the prevalence of factual hallucinations. Standard supervised fine-tuning often fails to strictly align linguistic outputs with visual evidence, while existing reinforcement learning approaches struggle with either prohibitive computational costs or limited exploration. To address these challenges, we propose a comprehensive framework for self-consistent radiology report generation. First, we conduct a systematic evaluation to identify optimal vision encoder and LLM backbone configurations for medical imaging. Building on this foundation, we introduce a novel "Reason-then-Summarize" architecture optimized via Group Relative Policy Optimization (GRPO). This framework restructures generation into two distinct components: a think block for detailed findings and an answer block for structured disease labels. By utilizing a multi-dimensional composite reward function, we explicitly penalize logical discrepancies between the generated narrative and the final diagnosis. Extensive experiments on the MIMIC-CXR benchmark demonstrate that our method achieves state-of-the-art performance in clinical efficacy metrics and significantly reduces hallucinations compared to strong supervised baselines.




The success of agricultural artificial intelligence depends heavily on large, diverse, and high-quality plant image datasets, yet collecting such data in real field conditions is costly, labor intensive, and seasonally constrained. This paper investigates diffusion-based generative modeling to address these challenges through plant image synthesis, indoor-to-outdoor translation, and expert preference aligned fine tuning. First, a Stable Diffusion model is fine tuned on captioned indoor and outdoor plant imagery to generate realistic, text conditioned images of canola and soybean. Evaluation using Inception Score, Frechet Inception Distance, and downstream phenotype classification shows that synthetic images effectively augment training data and improve accuracy. Second, we bridge the gap between high resolution indoor datasets and limited outdoor imagery using DreamBooth-based text inversion and image guided diffusion, generating translated images that enhance weed detection and classification with YOLOv8. Finally, a preference guided fine tuning framework trains a reward model on expert scores and applies reward weighted updates to produce more stable and expert aligned outputs. Together, these components demonstrate a practical pathway toward data efficient generative pipelines for agricultural AI.
Generative video modeling has emerged as a compelling tool to zero-shot reason about plausible physical interactions for open-world manipulation. Yet, it remains a challenge to translate such human-led motions into the low-level actions demanded by robotic systems. We observe that given an initial image and task instruction, these models excel at synthesizing sensible object motions. Thus, we introduce Dream2Flow, a framework that bridges video generation and robotic control through 3D object flow as an intermediate representation. Our method reconstructs 3D object motions from generated videos and formulates manipulation as object trajectory tracking. By separating the state changes from the actuators that realize those changes, Dream2Flow overcomes the embodiment gap and enables zero-shot guidance from pre-trained video models to manipulate objects of diverse categories-including rigid, articulated, deformable, and granular. Through trajectory optimization or reinforcement learning, Dream2Flow converts reconstructed 3D object flow into executable low-level commands without task-specific demonstrations. Simulation and real-world experiments highlight 3D object flow as a general and scalable interface for adapting video generation models to open-world robotic manipulation. Videos and visualizations are available at https://dream2flow.github.io/.
Smartphone-based tele-dermatology assumes that colorimetric calibration ensures clinical reliability, yet this remains untested for underrepresented skin phototypes. We investigated whether standard calibration translates to reliable clinical biomarkers using 43,425 images from 965 Korean subjects (Fitzpatrick III-IV) across DSLR, tablet, and smartphone devices. While Linear Color Correction Matrix (CCM) normalization reduced color error by 67-77% -- achieving near-clinical accuracy (Delta E < 2.3) -- this success did not translate to biomarker reliability. We identify a phenomenon termed "color-clinical decoupling": despite perceptual accuracy, the Individual Typology Angle (ITA) showed poor inter-device agreement (ICC = 0.40), while the Melanin Index achieved good agreement (ICC = 0.77). This decoupling is driven by the ITA formula's sensitivity to b* channel noise and is further compounded by anatomical variance. Facial region accounts for 25.2% of color variance -- 3.6x greater than device effects (7.0%) -- challenging the efficacy of single-patch calibration. Our results demonstrate that current colorimetric standards are insufficient for clinical-grade biomarker extraction, necessitating region-aware protocols for mobile dermatology.




Handwritten text recognition (HTR) and machine translation continue to pose significant challenges, particularly for low-resource languages like Marathi, which lack large digitized corpora and exhibit high variability in handwriting styles. The conventional approach to address this involves a two-stage pipeline: an OCR system extracts text from handwritten images, which is then translated into the target language using a machine translation model. In this work, we explore and compare the performance of traditional OCR-MT pipelines with Vision Large Language Models that aim to unify these stages and directly translate handwritten text images in a single, end-to-end step. Our motivation is grounded in the urgent need for scalable, accurate translation systems to digitize legal records such as FIRs, charge sheets, and witness statements in India's district and high courts. We evaluate both approaches on a curated dataset of handwritten Marathi legal documents, with the goal of enabling efficient legal document processing, even in low-resource environments. Our findings offer actionable insights toward building robust, edge-deployable solutions that enhance access to legal information for non-native speakers and legal professionals alike.




In high-stakes domains, small task-specific vision models are crucial due to their low computational requirements and the availability of numerous methods to explain their results. However, these explanations often reveal that the models do not align well with human domain knowledge, relying instead on spurious correlations. This might result in brittle behavior once deployed in the real-world. To address this issue, we introduce a novel and efficient method for aligning small task-specific vision models with human domain knowledge by leveraging the generalization capabilities of a Large Vision Language Model (LVLM). Our LVLM-Aided Visual Alignment (LVLM-VA) method provides a bidirectional interface that translates model behavior into natural language and maps human class-level specifications to image-level critiques, enabling effective interaction between domain experts and the model. Our method demonstrates substantial improvement in aligning model behavior with human specifications, as validated on both synthetic and real-world datasets. We show that it effectively reduces the model's dependence on spurious features and on group-specific biases, without requiring fine-grained feedback.
Digital humanities are significantly transforming how Egyptologists study ancient Egyptian texts. The OCR-PT-CT project proposes a recognition method for hieroglyphs based on images of Coffin Texts (CT) from Adriaan de Buck (1935-1961) and Pyramid Texts (PT) from Middle Kingdom coffins (James Allen, 2006). The system identifies hieroglyphs and transcribes them into Gardiner's codes. A web tool organizes them by spells and witnesses, storing the data in CSV format for integration with the MORTEXVAR dataset, which collects Coffin Texts with metadata, transliterations, and translations for research. Recognition has been addressed in two ways: a Mobilenet neural network trained on 140 hieroglyph classes achieved 93.87 \% accuracy but struggled with underrepresented classes. A novel Deep Metric Learning approach improves flexibility for new or data-limited signs, achieving 97.70 \% accuracy and recognizing more hieroglyphs. Due to its superior performance under class imbalance and adaptability, the final system adopts Deep Metric Learning as the default classifier.
Data scarcity and distribution shift pose major challenges for masked face detection and recognition. We propose a two-step generative data augmentation framework that combines rule-based mask warping with unpaired image-to-image translation using GANs, enabling the generation of realistic masked-face samples beyond purely synthetic transformations. Compared to rule-based warping alone, the proposed approach yields consistent qualitative improvements and complements existing GAN-based masked face generation methods such as IAMGAN. We introduce a non-mask preservation loss and stochastic noise injection to stabilize training and enhance sample diversity. Experimental observations highlight the effectiveness of the proposed components and suggest directions for future improvements in data-centric augmentation for face recognition tasks.