Abstract:This report studies diffusion posterior sampling (DPS) for single-image super-resolution (SISR) under a known degradation model. We implement a likelihood-guided sampling procedure that combines an unconditional diffusion prior with gradient-based conditioning to enforce measurement consistency for $4\times$ super-resolution with additive Gaussian noise. We evaluate posterior sampling (PS) conditioning across guidance scales and noise levels, using PSNR and SSIM as fidelity metrics and a combined selection score $(\mathrm{PSNR}/40)+\mathrm{SSIM}$. Our ablation shows that moderate guidance improves reconstruction quality, with the best configuration achieved at PS scale $0.95$ and noise standard deviation $σ=0.01$ (score $1.45231$). Qualitative results confirm that the selected PS setting restores sharper edges and more coherent facial details compared to the downsampled inputs, while alternative conditioning strategies (e.g., MCG and PS-annealed) exhibit different texture fidelity trade-offs. These findings highlight the importance of balancing diffusion priors and measurement-gradient strength to obtain stable, high-quality reconstructions without retraining the diffusion model for each operator.
Abstract:We study CT image denoising in the unpaired and self-supervised regimes by evaluating two strong, training-data-efficient paradigms: a CycleGAN-based residual translator and a Noise2Score (N2S) score-matching denoiser. Under a common evaluation protocol, a configuration sweep identifies a simple standard U-Net backbone within CycleGAN (lambda_cycle = 30, lambda_iden = 2, ngf = ndf = 64) as the most reliable setting; we then train it to convergence with a longer schedule. The selected CycleGAN improves the noisy input from 34.66 dB / 0.9234 SSIM to 38.913 dB / 0.971 SSIM and attains an estimated score of 1.9441 and an unseen-set (Kaggle leaderboard) score of 1.9343. Noise2Score, while slightly behind in absolute PSNR / SSIM, achieves large gains over very noisy inputs, highlighting its utility when clean pairs are unavailable. Overall, CycleGAN offers the strongest final image quality, whereas Noise2Score provides a robust pair-free alternative with competitive performance. Source code is available at https://github.com/hanifsyarubany/CT-Scan-Image-Denoising-using-CycleGAN-and-Noise2Score.