What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
Aug 28, 2025
Abstract:Automatic Speech Recognition (ASR) systems often struggle to accurately process children's speech due to its distinct and highly variable acoustic and linguistic characteristics. While recent advancements in self-supervised learning (SSL) models have greatly enhanced the transcription of adult speech, accurately transcribing children's speech remains a significant challenge. This study investigates the effectiveness of layer-wise features extracted from state-of-the-art SSL pre-trained models - specifically, Wav2Vec2, HuBERT, Data2Vec, and WavLM in improving the performance of ASR for children's speech in zero-shot scenarios. A detailed analysis of features extracted from these models was conducted, integrating them into a simplified DNN-based ASR system using the Kaldi toolkit. The analysis identified the most effective layers for enhancing ASR performance on children's speech in a zero-shot scenario, where WSJCAM0 adult speech was used for training and PFSTAR children speech for testing. Experimental results indicated that Layer 22 of the Wav2Vec2 model achieved the lowest Word Error Rate (WER) of 5.15%, representing a 51.64% relative improvement over the direct zero-shot decoding using Wav2Vec2 (WER of 10.65%). Additionally, age group-wise analysis demonstrated consistent performance improvements with increasing age, along with significant gains observed even in younger age groups using the SSL features. Further experiments on the CMU Kids dataset confirmed similar trends, highlighting the generalizability of the proposed approach.
* IEEE Signal Processing Letters 2025
* Accepted
Via

Aug 25, 2025
Abstract:Automatic Speech Recognition (ASR) systems in real-world settings need to handle imperfect audio, often degraded by hardware limitations or environmental noise, while accommodating diverse user groups. In human-robot interaction (HRI), these challenges intersect to create a uniquely challenging recognition environment. We evaluate four state-of-the-art ASR systems on eight publicly available datasets that capture six dimensions of difficulty: domain-specific, accented, noisy, age-variant, impaired, and spontaneous speech. Our analysis demonstrates significant variations in performance, hallucination tendencies, and inherent biases, despite similar scores on standard benchmarks. These limitations have serious implications for HRI, where recognition errors can interfere with task performance, user trust, and safety.
* Accepted at the workshop on Foundation Models for Social Robotics
(FoMoSR) at ICSR 2025
Via

Aug 26, 2025
Abstract:Recent advances in speech large language models (SLMs) have improved speech recognition and translation in general domains, but accurately generating domain-specific terms or neologisms remains challenging. To address this, we propose Attention2Probability: attention-driven terminology probability estimation for robust speech-to-text system, which is lightweight, flexible, and accurate. Attention2Probability converts cross-attention weights between speech and terminology into presence probabilities, and it further employs curriculum learning to enhance retrieval accuracy. Furthermore, to tackle the lack of data for speech-to-text tasks with terminology intervention, we create and release a new speech dataset with terminology to support future research in this area. Experimental results show that Attention2Probability significantly outperforms the VectorDB method on our test set. Specifically, its maximum recall rates reach 92.57% for Chinese and 86.83% for English. This high recall is achieved with a latency of only 8.71ms per query. Intervening in SLMs' recognition and translation tasks using Attention2Probability-retrieved terms improves terminology accuracy by 6-17%, while revealing that the current utilization of terminology by SLMs has limitations.
* 9 pages, 4 figures, 5 tables
Via

Aug 25, 2025
Abstract:Contextual automatic speech recognition (ASR) systems allow for recognizing out-of-vocabulary (OOV) words, such as named entities or rare words. However, it remains challenging due to limited training data and ambiguous or inconsistent pronunciations. In this paper, we propose a synthesis-driven multi-pronunciation contextual biasing method that performs zero-shot contextual ASR on a pretrained Whisper model. Specifically, we leverage text-to-speech (TTS) systems to synthesize diverse speech samples containing each target rare word, and then use the pretrained Whisper model to extract multiple predicted pronunciation variants. These variant token sequences are compiled into a prefix-trie, which assigns rewards to beam hypotheses in a shallow-fusion manner during beam-search decoding. After which, any recognized variant is mapped back to the original rare word in the final transcription. The evaluation results on the Librispeech dataset show that our method reduces biased word error rate (WER) by 42% on test-clean and 43% on test-other while maintaining unbiased WER essentially unchanged.
* Accepted to APSIPA ASC 2025
Via

Aug 17, 2025
Abstract:Noise robustness in speech foundation models (SFMs) has been a critical challenge, as most models are primarily trained on clean data and experience performance degradation when the models are exposed to noisy speech. To address this issue, we propose HuBERT-VIC, a noise-robust SFM with variance, in-variance, and covariance regularization (VICReg) objectives. These objectives adjust the statistics of noisy speech representations, enabling the model to capture diverse acoustic characteristics and improving the generalization ability across different types of noise. When applied to HuBERT, our model shows relative performance improvements of 23.3% on LibriSpeech test-clean and 13.2% on test-other, compared to the baseline model pre-trained on noisy speech.
* Accepted at Interspeech 2025
Via

Aug 25, 2025
Abstract:Depression commonly co-occurs with neurodegenerative disorders like Multiple Sclerosis (MS), yet the potential of speech-based Artificial Intelligence for detecting depression in such contexts remains unexplored. This study examines the transferability of speech-based depression detection methods to people with MS (pwMS) through cross-corpus and cross-lingual analysis using English data from the general population and German data from pwMS. Our approach implements supervised machine learning models using: 1) conventional speech and language features commonly used in the field, 2) emotional dimensions derived from a Speech Emotion Recognition (SER) model, and 3) exploratory speech feature analysis. Despite limited data, our models detect depressive mood in pwMS with moderate generalisability, achieving a 66% Unweighted Average Recall (UAR) on a binary task. Feature selection further improved performance, boosting UAR to 74%. Our findings also highlight the relevant role emotional changes have as an indicator of depressive mood in both the general population and within PwMS. This study provides an initial exploration into generalising speech-based depression detection, even in the presence of co-occurring conditions, such as neurodegenerative diseases.
* Accepted at the 8th International Conference on Natural Language and
Speech Processing (ICNLSP 2025). To be appeared in the corresponding
Proceedings at ACL Anthology
Via

Aug 21, 2025
Abstract:Code-switching (CS), the alternation between two or more languages within a single speaker's utterances, is common in real-world conversations and poses significant challenges for multilingual speech technology. However, systems capable of handling this phenomenon remain underexplored, primarily due to the scarcity of suitable datasets. To resolve this issue, we propose Universal Code-Mixer (UniCoM), a novel pipeline for generating high-quality, natural CS samples without altering sentence semantics. Our approach utilizes an algorithm we call Substituting WORDs with Synonyms (SWORDS), which generates CS speech by replacing selected words with their translations while considering their parts of speech. Using UniCoM, we construct Code-Switching FLEURS (CS-FLEURS), a multilingual CS corpus designed for automatic speech recognition (ASR) and speech-to-text translation (S2TT). Experimental results show that CS-FLEURS achieves high intelligibility and naturalness, performing comparably to existing datasets on both objective and subjective metrics. We expect our approach to advance CS speech technology and enable more inclusive multilingual systems.
* Accepted to EMNLP 2025 Findings
Via

Aug 12, 2025
Abstract:Contextual speech recognition refers to the ability to identify preferences for specific content based on contextual information. Recently, leveraging the contextual understanding capabilities of Speech LLM to achieve contextual biasing by injecting contextual information through prompts have emerged as a research hotspot.However, the direct information injection method via prompts relies on the internal attention mechanism of the model, making it impossible to explicitly control the extent of information injection. To address this limitation, we propose a joint decoding method to control the contextual information. This approach enables explicit control over the injected contextual information and achieving superior recognition performance. Additionally, Our method can also be used for sensitive word suppression recognition.Furthermore, experimental results show that even Speech LLM not pre-trained on long contextual data can acquire long contextual capabilities through our method.
Via

Sep 03, 2025
Abstract:Sign language (SL) is an essential communication form for hearing-impaired and deaf people, enabling engagement within the broader society. Despite its significance, limited public awareness of SL often leads to inequitable access to educational and professional opportunities, thereby contributing to social exclusion, particularly in Saudi Arabia, where over 84,000 individuals depend on Saudi Sign Language (SSL) as their primary form of communication. Although certain technological approaches have helped to improve communication for individuals with hearing impairments, there continues to be an urgent requirement for more precise and dependable translation techniques, especially for Arabic sign language variants like SSL. Most state-of-the-art solutions have primarily focused on non-Arabic sign languages, resulting in a considerable absence of resources dedicated to Arabic sign language, specifically SSL. The complexity of the Arabic language and the prevalence of isolated sign language datasets that concentrate on individual words instead of continuous speech contribute to this issue. To address this gap, our research represents an important step in developing SSL resources. To address this, we introduce the first continuous Saudi Sign Language dataset called KAU-CSSL, focusing on complete sentences to facilitate further research and enable sophisticated recognition systems for SSL recognition and translation. Additionally, we propose a transformer-based model, utilizing a pretrained ResNet-18 for spatial feature extraction and a Transformer Encoder with Bidirectional LSTM for temporal dependencies, achieving 99.02\% accuracy at signer dependent mode and 77.71\% accuracy at signer independent mode. This development leads the way to not only improving communication tools for the SSL community but also making a substantial contribution to the wider field of sign language.
* 23 pages, 13 figures, 5 tables
Via

Aug 20, 2025
Abstract:While multiple emotional speech corpora exist for commonly spoken languages, there is a lack of functional datasets for smaller (spoken) languages, such as Danish. To our knowledge, Danish Emotional Speech (DES), published in 1997, is the only other database of Danish emotional speech. We present EmoTale; a corpus comprising Danish and English speech recordings with their associated enacted emotion annotations. We demonstrate the validity of the dataset by investigating and presenting its predictive power using speech emotion recognition (SER) models. We develop SER models for EmoTale and the reference datasets using self-supervised speech model (SSLM) embeddings and the openSMILE feature extractor. We find the embeddings superior to the hand-crafted features. The best model achieves an unweighted average recall (UAR) of 64.1% on the EmoTale corpus using leave-one-speaker-out cross-validation, comparable to the performance on DES.
* To appear in the proceedings of ASRU 2025
Via
