Abstract:Code-switching (CS), the alternation between two or more languages within a single speaker's utterances, is common in real-world conversations and poses significant challenges for multilingual speech technology. However, systems capable of handling this phenomenon remain underexplored, primarily due to the scarcity of suitable datasets. To resolve this issue, we propose Universal Code-Mixer (UniCoM), a novel pipeline for generating high-quality, natural CS samples without altering sentence semantics. Our approach utilizes an algorithm we call Substituting WORDs with Synonyms (SWORDS), which generates CS speech by replacing selected words with their translations while considering their parts of speech. Using UniCoM, we construct Code-Switching FLEURS (CS-FLEURS), a multilingual CS corpus designed for automatic speech recognition (ASR) and speech-to-text translation (S2TT). Experimental results show that CS-FLEURS achieves high intelligibility and naturalness, performing comparably to existing datasets on both objective and subjective metrics. We expect our approach to advance CS speech technology and enable more inclusive multilingual systems.

Abstract:The Bradley-Terry (BT) model is widely practiced in reward modeling for reinforcement learning with human feedback (RLHF). Despite its effectiveness, reward models (RMs) trained with BT model loss are prone to over-optimization, losing generalizability to unseen input distributions. In this paper, we study the cause of over-optimization in RM training and its downstream effects on the RLHF procedure, accentuating the importance of distributional robustness of RMs in unseen data. First, we show that the excessive dispersion of hidden state norms is the main source of over-optimization. Then, we propose batch-wise sum-to-zero regularization (BSR) to enforce zero-centered reward sum per batch, constraining the rewards with extreme magnitudes. We assess the impact of BSR in improving robustness in RMs through four scenarios of over-optimization, where BSR consistently manifests better robustness. Subsequently, we compare the plain BT model and BSR on RLHF training and empirically show that robust RMs better align the policy to the gold preference model. Finally, we apply BSR to high-quality data and models, which surpasses state-of-the-art RMs in the 8B scale by adding more than 5% in complex preference prediction tasks. By conducting RLOO training with 8B RMs, AlpacaEval 2.0 reduces generation length by 40% while adding a 7% increase in win rate, further highlighting that robustness in RMs induces robustness in RLHF training. We release the code, data, and models: https://github.com/LinkedIn-XFACT/RM-Robustness.





Abstract:Stable pre-training is essential for achieving better-performing language models. However, tracking pre-training stability by calculating gradient variance at every step is impractical due to the significant computational costs. We explore Token Embedding Variability (TEV) as a simple and efficient proxy for assessing pre-training stability in language models with pre-layer normalization, given that shallower layers are more prone to gradient explosion (section 2.2). Moreover, we propose Multi-head Low-Rank Attention (MLRA) as an architecture to alleviate such instability by limiting the exponential growth of output embedding variance, thereby preventing the gradient explosion (section 3.2). Empirical results on GPT-2 with MLRA demonstrate increased stability and lower perplexity, particularly in deeper models.
