The advent of large language models (LLMs) has gained tremendous attention over the past year. Previous studies have shown the astonishing performance of LLMs not only in other tasks but also in emotion recognition in terms of accuracy, universality, explanation, robustness, few/zero-shot learning, and others. Leveraging the capability of LLMs inevitably becomes an essential solution for emotion recognition. To this end, we further comprehensively investigate how LLMs perform in linguistic emotion recognition if we concentrate on this specific task. Specifically, we exemplify a publicly available and widely used LLM -- Chat General Language Model, and customise it for our target by using two different modal adaptation techniques, i.e., deep prompt tuning and low-rank adaptation. The experimental results obtained on six widely used datasets present that the adapted LLM can easily outperform other state-of-the-art but specialised deep models. This indicates the strong transferability and feasibility of LLMs in the field of emotion recognition.
Despite significant advancements in deep learning for vision and natural language, unsupervised domain adaptation in audio remains relatively unexplored. We, in part, attribute this to the lack of an appropriate benchmark dataset. To address this gap, we present Synthia's melody, a novel audio data generation framework capable of simulating an infinite variety of 4-second melodies with user-specified confounding structures characterised by musical keys, timbre, and loudness. Unlike existing datasets collected under observational settings, Synthia's melody is free of unobserved biases, ensuring the reproducibility and comparability of experiments. To showcase its utility, we generate two types of distribution shifts-domain shift and sample selection bias-and evaluate the performance of acoustic deep learning models under these shifts. Our evaluations reveal that Synthia's melody provides a robust testbed for examining the susceptibility of these models to varying levels of distribution shift.
Multi-task learning (MTL) aims to improve the performance of a primary task by jointly learning with related auxiliary tasks. Traditional MTL methods select tasks randomly during training. However, both previous studies and our results suggest that such the random selection of tasks may not be helpful, and can even be harmful to performance. Therefore, new strategies for task selection and assignment in MTL need to be explored. This paper studies the multi-modal, multi-task dialogue act classification task, and proposes a method for selecting and assigning tasks based on non-stationary multi-armed bandits (MAB) with discounted Thompson Sampling (TS) using Gaussian priors. Our experimental results show that in different training stages, different tasks have different utility. Our proposed method can effectively identify the task utility, actively avoid useless or harmful tasks, and realise the task assignment during training. Our proposed method is significantly superior in terms of UAR and F1 to the single-task and multi-task baselines with p-values < 0.05. Further analysis of experiments indicates that for the dataset with the data imbalance problem, our proposed method has significantly higher stability and can obtain consistent and decent performance for minority classes. Our proposed method is superior to the current state-of-the-art model.
Advances in passive acoustic monitoring and machine learning have led to the procurement of vast datasets for computational bioacoustic research. Nevertheless, data scarcity is still an issue for rare and underrepresented species. This study investigates how meta-information can improve zero-shot audio classification, utilising bird species as an example case study due to the availability of rich and diverse metadata. We investigate three different sources of metadata: textual bird sound descriptions encoded via (S)BERT, functional traits (AVONET), and bird life-history (BLH) characteristics. As audio features, we extract audio spectrogram transformer (AST) embeddings and project them to the dimension of the auxiliary information by adopting a single linear layer. Then, we employ the dot product as compatibility function and a standard zero-shot learning ranking hinge loss to determine the correct class. The best results are achieved by concatenating the AVONET and BLH features attaining a mean F1-score of .233 over five different test sets with 8 to 10 classes.
Language use has been shown to correlate with depression, but large-scale validation is needed. Traditional methods like clinic studies are expensive. So, natural language processing has been employed on social media to predict depression, but limitations remain-lack of validated labels, biased user samples, and no context. Our study identified 29 topics in 3919 smartphone-collected speech recordings from 265 participants using the Whisper tool and BERTopic model. Six topics with a median PHQ-8 greater than or equal to 10 were regarded as risk topics for depression: No Expectations, Sleep, Mental Therapy, Haircut, Studying, and Coursework. To elucidate the topic emergence and associations with depression, we compared behavioral (from wearables) and linguistic characteristics across identified topics. The correlation between topic shifts and changes in depression severity over time was also investigated, indicating the importance of longitudinally monitoring language use. We also tested the BERTopic model on a similar smaller dataset (356 speech recordings from 57 participants), obtaining some consistent results. In summary, our findings demonstrate specific speech topics may indicate depression severity. The presented data-driven workflow provides a practical approach to collecting and analyzing large-scale speech data from real-world settings for digital health research.
This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, \textit{Large Audio Models}, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding \textit{Foundational Large Audio Models}, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of \textit{Large Audio Models} with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.
With the rise of foundation models, a new artificial intelligence paradigm has emerged, by simply using general purpose foundation models with prompting to solve problems instead of training a separate machine learning model for each problem. Such models have been shown to have emergent properties of solving problems that they were not initially trained on. The studies for the effectiveness of such models are still quite limited. In this work, we widely study the capabilities of the ChatGPT models, namely GPT-4 and GPT-3.5, on 13 affective computing problems, namely aspect extraction, aspect polarity classification, opinion extraction, sentiment analysis, sentiment intensity ranking, emotions intensity ranking, suicide tendency detection, toxicity detection, well-being assessment, engagement measurement, personality assessment, sarcasm detection, and subjectivity detection. We introduce a framework to evaluate the ChatGPT models on regression-based problems, such as intensity ranking problems, by modelling them as pairwise ranking classification. We compare ChatGPT against more traditional NLP methods, such as end-to-end recurrent neural networks and transformers. The results demonstrate the emergent abilities of the ChatGPT models on a wide range of affective computing problems, where GPT-3.5 and especially GPT-4 have shown strong performance on many problems, particularly the ones related to sentiment, emotions, or toxicity. The ChatGPT models fell short for problems with implicit signals, such as engagement measurement and subjectivity detection.
Despite recent advancements in speech emotion recognition (SER) models, state-of-the-art deep learning (DL) approaches face the challenge of the limited availability of annotated data. Large language models (LLMs) have revolutionised our understanding of natural language, introducing emergent properties that broaden comprehension in language, speech, and vision. This paper examines the potential of LLMs to annotate abundant speech data, aiming to enhance the state-of-the-art in SER. We evaluate this capability across various settings using publicly available speech emotion classification datasets. Leveraging ChatGPT, we experimentally demonstrate the promising role of LLMs in speech emotion data annotation. Our evaluation encompasses single-shot and few-shots scenarios, revealing performance variability in SER. Notably, we achieve improved results through data augmentation, incorporating ChatGPT-annotated samples into existing datasets. Our work uncovers new frontiers in speech emotion classification, highlighting the increasing significance of LLMs in this field moving forward.